33 research outputs found

    EcoVeg: a new approach to vegetation description and classification

    Get PDF
    A vegetation classification approach is needed that can describe the diversity of terrestrial ecosystems and their transformations over large time frames, span the full range of spatial and geographic scales across the globe, and provide knowledge of reference conditions and current states of ecosystems required to make decisions about conservation and resource management. We summarize the scientific basis for EcoVeg, a physiognomic-floristic-ecological classification approach that applies to existing vegetation, both cultural (planted and dominated by human processes) and natural (spontaneously formed and dominated by nonhuman ecological processes). The classification is based on a set of vegetation criteria, including physiognomy (growth forms, structure) and floristics (compositional similarity and characteristic species combinations), in conjunction with ecological characteristics, including site factors, disturbance, bioclimate, and biogeography. For natural vegetation, the rationale for the upper levels (formation types) is based on the relation between global-scale vegetation patterns and macroclimate, hydrology, and substrate. The rationale for the middle levels is based on scaling from regional formations (divisions) to regional floristic-physiognomic types (macrogroup and group) that respond to meso-scale biogeographic, climatic, disturbance, and site factors. Finally, the lower levels (alliance and association) are defined by detailed floristic composition that responds to local to regional topo-edaphic and disturbance gradients. For cultural vegetation, the rationale is similar, but types are based on distinctive vegetation physiognomy and floristics that reflect human activities. The hierarchy provides a structure that organizes regional/continental vegetation patterns in the context of global patterns. A formal nomenclature is provided, along with a descriptive template that provides the differentiating criteria for each type at all levels of the hierarchy. Formation types have been described for the globe; divisions and macrogroups for North America, Latin America and Africa; groups, alliances and associations for the United States, parts of Canada, Latin America and, in partnership with other classifications that share these levels, many other parts of the globe

    Conserving Ecosystem Diversity in the Tropical Andes

    Get PDF
    Documenting temporal trends in the extent of ecosystems is essential to monitoring their status but combining this information with the degree of protection helps us assess the effectiveness of societal actions for conserving ecosystem diversity and related ecosystem services. We demonstrated indicators in the Tropical Andes using both potential (pre-industrial) and recent (~2010) distribution maps of terrestrial ecosystem types. We measured long-term ecosystem loss, representation of ecosystem types within the current protected areas, quantifying the additional representation offered by protecting Key Biodiversity Areas. Six (4.8%) ecosystem types (i.e., measured as 126 distinct vegetation macrogroups) have lost >50% in extent across four Andean countries since pre-industrial times. For ecosystem type representation within protected areas, regarding the pre-industrial extent of each type, a total of 32 types (25%) had higher representation (>30%) than the post-2020 Convention on Biological Diversity (CBD) draft target in existing protected areas. Just 5 of 95 types (5.2%) within the montane Tropical Andes hotspot are currently represented with >30% within the protected areas. Thirty-nine types (31%) within these countries could cross the 30% CBD 2030 target with the addition of Key Biodiversity Areas. This indicator is based on the Essential Biodiversity Variables (EBV) and responds directly to the needs expressed by the users of these countries

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    La frecuencia de la pasiva en español y otras lenguas

    No full text

    EJE 02-04 Contaminación por ruido en centros urbanos

    No full text
    RESUMENContar con parámetros de calidad ambiental en la ciudad de Cuenca, ha sido el objetivo de la Universidad del Azuay; es así que desde al año 2009, realiza monitoreos periódicos de las emisiones sonoras, en sitios pre establecidos. Se inició con 30 puntos de monitoreo hasta el año 2015, y para el presente trabajo se incrementó un punto adicional ubicado en el redondel de la Universidad del Azuay, debido a la importancia de contar con información sonora producida por la dinámica de este centro de estudios. Se utilizó un sonómetro para el levantamiento de datos; en cada sitio de monitoreo se levantó información en seis horarios representativos: 7h00, 10h00, 13h00, 15h00, 18h00 y 21h00 en un período de 15 minutos por cada horario. Los datos obtenidos fueron evaluados sobre la base de comparación con la normativa ambiental nacional vigente (Anexo 5 del Texto Unificado de Legislación Secundaria del Ministerio del Ambiente (TULSMA – 2015). Para la modelación del ruido y su representación en mapas se utilizaron: el método de interpolación del Inverso de la Distancia IDW y el software Datakustik “Cadna A”, que estima las emisiones sonoras sobre la base de parámetros viales (Tráfico promedio diario, ancho de vía, tipo de calzada, etc.). La representación obtenida con el citado software, representade manera directa el comportamiento del ruido en las vías, constituyendo una representación ajustada a la dinámica de la población. Los resultados reflejan una disminución en las emisiones en el último año, en comparación con años anteriores, sin embargo, las emisiones están sobre las normas ambientales, observando que las campañas de sensi-bilización son necesarias para mantener en la ciudadanía atenta y comprometida con la disminución de las emisiones.Palabras clave: Ruido, evaluación sonora, TULSMA, uso del suelo. ABSTRACTHaving environmental quality parameters in the city of Cuenca has been the objective of the University of Azuay; it is so that from 2009, it performs periodic monitoring of sound emissions, in pre-established sites. It began with 30 monitoring points until 2015, and for the present work, an additional point located in the roundabout of the University of Azuay due to the importance of having sound information produced by the dynamics of this center of studies. A sound level meter is used for data collection; at each monitoring site, in formation was collected at six representative times: 7:00 a.m., 10:00 a.m., 1:00 p.m., 3:00 p.m., 6:00 p.m. and 9:00 p.m. in a period of 15 minutes for each schedule. The data obtained was evaluated based on comparison with the current national environmental regulations (Annex 5 of the Unified Text of Secondary Legislation of the Ministry of the Environment (TULSMA – 2015 in Spanish). For the modeling of the noise and its representation in maps: the interpolation method of the Inverse Distance IDW and the software Datakustik “Cadna A” was used. Which estimates sound emissions based on road parameters (average daily traffic, track gauge, road type, etc.). The representation obtained with this software, directly represents the behavior of the noise in the tracks, constituting a representation adjusted to the dynamics of the population. The results reflect a decrease in emissions in the last year, compared to previous years; however, emissions are above environmental standards, noting that awareness campaigns are necessary to keep citizens attentive and committed to decreasing the emissions.Keywords: Noise, sound evaluation, TULSMA, land use

    EJE-02-03 Bosques de la Región Amazónica Ecuatoriana: ¿Qué nos dicen las cifras de deforestación de los últimos 15 años?

    No full text
    RESUMENEl bosque de la cuenca del Río Amazonas, bosque tropical continuo más extenso del mundo, almacena grandes cantidades de carbono, alberga pueblos indígenas y colonos, y provee servicios ecosistémicos de importancia global. A pesar de varias iniciativas, la deforestación, una de las principales fuentes de emisiones antropogénicas de gases de efecto invernadero, continúa sin disminución. Los análisis indican que la Región Amazónica Ecuatoriana (RAE) ha perdido 1.1% de sus bosques en el último quinquenio 2010-2015, lo que implica una reducción de la deforestación con respecto al quinquenio anterior 2005-2010 de -12%, tendencia similar a la de la Cuenca Amazónica. El análisis demuestra que existió una reducción de la deforestación en Territorios Indígenas (TI, -16%) y en Áreas Naturales Protegidas (ANP, -3%), mientras que en áreas de ANP sin solapamiento con TI ha aumentado (+18%), contrario a la tendencia general. En áreas de solapamiento entre ANP y TI la deforestación ha disminuido (-35%) al igual que en las áreas fuera de ANP y/o TI (-15%).La preocupación frente a este tema ha convocado la participación de organizaciones científicas en el desarrollo de metodologías para generar información estandarizada sobre las dinámicas de la pérdida de bosque a nivel panamazónico. En este marco, EcoCiencia, como parte de la Red Amazónica de Información Socioambiental Georreferenciada (RAISG), ha producido análisis quinquenales de deforestación (2000-2015) para la RAE, mediante un protocolo metodológico compartido por los 9 países de la cuenca, basados en clasificación de imágenes satelitales y herramientas de procesamiento en la nube.Palabras clave: Cuenca Amazónica, deforestación, sensores remotos. ABSTRACTThe Amazon River Basin Forest, the world’s largest continuous tropical forest, stores large amounts of carbon, shelters indigenous peoples and settlers, and provides ecosystem services of global significance. Despite several initiatives, deforestation, which represents one of the main sources of anthropogenic emissions of greenhouse gases, continues unabated at the global level. Our analysis indicates that the Ecuadorian Amazonian Region (RAE) has lost 1.1% of its forests in the last five years 2010-2015, which implies a -12% reduction of deforestation in relation to the previous five-year period 2005-2010, a trend similar to that of the Amazon basin. The analysis of deforested areas between these five year periods shows that deforestation declined within Indigenous Territories (-16%) and within Natural Protected Areas (-3%). However, this latter value combines a decrease indeforestation in areas of overlap between ANP and IT (-35%) and an increase in ANP areas without overlap with IT (+ 18%). The areas outside ANP and / or IT had a decrease of -15%.Concern about this issue has called for the active participation of scientific organizations in the development of methodologies to understand and generate standardized informa-tion on the dynamics of forest loss at the Pan-Amazonian level. Within this framework, EcoCiencia Foundation, as part of the RAISG, has produced deforestation analyzes forthree five-year periods from 2000 to 2015 for the RAE through a methodological protocol shared by the 9 countries of the basin, based on automated classification of satellite im-agery and, more recently, cloud processing tools.Keywords: Amazon basin, deforestation, remote sensing

    Long-term loss in extent and current protection of terrestrial ecosystem diversity in the temperate and tropical Americas.

    No full text
    Documenting changes in ecosystem extent and protection is essential to understanding status of biodiversity and related ecosystem services and have direct applications to measuring Essential Biodiversity Variables, Targets under the Convention on Biological Diversity (CBD), and IUCN Red List of Ecosystems. We developed both potential and current distribution maps of terrestrial ecosystem types for the temperate and tropical Americas; with "potential" estimating where a type would likely occur today had there not been prior land conversion for modern land uses. We utilized a hierarchical classification to describe and map natural ecosystem types at six levels of thematic detail, with lower thematic levels defining more units each with narrower floristic range than upper levels. Current land use/land cover was derived using available global data on human land use intensity and combined with the potential distribution maps to estimate long-term change in extent for each ecosystem type. We also assessed representation of ecosystem types within protected areas as defined by IUCN I-VI land status categories. Of the 749 ecosystem types assessed, represented at 5th (n = 315) vs. 6th (n = 433) levels of the classification hierarchy, 5 types (1.6%) and 31 types (7.1%), respectively, have lost >90% of their potential extent. Some 66 types (20.9%) and 141 types (32.5%), respectively, have lost >50% of their potential extent; thus, crossing thresholds of Vulnerable status under IUCN Red List criterion A3. For ecosystem type representation within IUCN protected area classes, with reference to potential extent of each type, 111 (45.3%) and 125 (28.8%) of types, respectively, have higher representation (>17%) than CBD 2020 targets. Twelve types (3.8%) and 23 (5.3%) of types, respectively, are represented with <1% within protected areas. We illustrate an option for visualizing and reporting on CBD targets (2020 and proposed post-2020) for ecosystem representativeness using both potential extent as a baseline
    corecore