409 research outputs found

    Fuzzy bi-objective optimization model for multi-echelon distribution network

    Get PDF
    It is important for modern businesses to search the ways for continuous improvement in performance of their supply chains. The effective coordination and integrated decision making across the supply chain enhances the performance among its various partners in a multi stage network. The partners considered in this paper are product suppliers, processing points (PP), distribution centres (DC) and retail outlets (RO). The network addresses an uncertain environment threatenedby different sources in order to captivate the real world conditions. The uncertain demand of deteriorating products and its dependent costs develop uncertainties in the environment. On the other hand, suppliers and processing points have restricted capacities for the retail outlets’ order amount happened in each period. A bi-objective non-linear fuzzy mathematical model is developed in which the uncertainties are represented by the fuzzy set theory. The proposed model shows cost minimization and best supplier selection coordination under the conditions of capacity constraints, uncertain parameters and product’s deteriorating nature. The fish and fish products give good examples for the proposed model. To solve, the model is converted into crisp form and solved with the help of fuzzy goal programming

    DYNAMIC PROGRAMMING APPROACH TO TESTING RESOURCE ALLOCATION PROBLEM FOR MODULAR SOFTWARE

    Get PDF
    Testing phase of a software begins with module testing. During this period modules are tested independently to remove maximum possible number of faults within a specified time limit or testing resource budget. This gives rise to some interesting optimization problems, which are discussed in this paper. Two Optimization models are proposed for optimal allocation of testing resources among the modules of a Software. In the first model, we maximize the total fault removal, subject to budgetary Constraint. In the second model, additional constraint representing aspiration level for fault removals for each module of the software is added. These models are solved using dynamic programming technique. The methods have been illustrated through numerical examples

    Multi-criteria media mix decision model for advertising multiple product with segment specific and mass media

    Get PDF
    Judicious media planning decisions are crucial for successful advertising of products. Media planners extensively use mathematical models supplemented with market research and expert opinion to devise the media plans. Media planning models discussed in the literature largely focus on single products with limited studies related to the multi-product media planning. In this paper we propose a media planning model to allocate limited advertising budget among multiple products advertised in a segmented market and determine the number of advertisements to be given in different media. The proposed model is formulated considering both segment specific and mass media vehicles to maximize the total advertising reach for each product. The model also incorporates the cross product effect of advertising of one product on the other. The proposed formulation is a multi-objective linear integer programming model and interactive linear integer goal programming is discussed to solve the model. A real life case study is presented to illustrate the application of the proposed model

    An Optimization Framework for “Build-or-Buy” Strategy for component Selection in a Fault Tolerant Modular Software System under Recovery Block Scheme

    Get PDF
    This paper discusses a framework that helps developers to decide whether to buy or build components of software architecture. Two optimization models have been proposed. First model is Bi-criteria optimization model based on decision variables in order to maximize the software reliability with simultaneous minimization of the overall cost of the system. The second optimization model deals with the issue of compatibility

    Effect of Introduction of Fault and Imperfect Debugging on Release Time

    Get PDF
    One of the most important decisions related to the efficient management of testing phase of software development life cycle is to determine when to stop testing and release the software in the market. Most of the testing processes are imperfect once. In this paper first we have discussed an optimal release time problem for an imperfect faultdebugging model due to Kapur et al considering effect of perfect and imperfect debugging separately on the total expected software cost. Next, we proposed a SRGM incorporating the effect of imperfect fault debugging and error generation. The proposed model is validated on a data set cited in literature and a release time problem is formulated minimizing the expected cost subject to a minimum reliability level to be achieved by the release time using the proposed model. Solution method is discussed to solve such class of problem. A numerical illustration is given for both type of release problem and finally a sensitivity analysis is performed

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    India’s contribution to mitigating the impacts of climate change through vegetation management

    Get PDF
    The changes in natural ecosystems provide opportunity to increase vegetation carbon sink capacity and thereby contribute to mitigation of climate change impacts. The Indian tropics and the large ecological variation within the country afford the advantage of diverse niches and offer opportunities to reveal the role of biotic factors at different levels of organization from populations to ecosystems. The last 4 decades of research and development in the Indian space science community has been primarily application driven in response to the government space programme for national development. The expenditure in R&D over next 5 year suggest that scientific research is higher on the country's agenda. The Indo-UK Terrestrial Carbon Group (IUTCG) comprising both Indian and UK scientists, funded jointly by the Department of Science and Technology, India and the Department of Business, Innovation and Skills organised a workshop to explore ways in which Earth observation data can be effectively utilised in mitigating the impacts of climate change through vegetation management. Effective integration of field observations, collected through various monitoring networks, and satellite sensor data has been proposed to provide country-wide monitoring

    Physical Processes in Star Formation

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00693-8.Star formation is a complex multi-scale phenomenon that is of significant importance for astrophysics in general. Stars and star formation are key pillars in observational astronomy from local star forming regions in the Milky Way up to high-redshift galaxies. From a theoretical perspective, star formation and feedback processes (radiation, winds, and supernovae) play a pivotal role in advancing our understanding of the physical processes at work, both individually and of their interactions. In this review we will give an overview of the main processes that are important for the understanding of star formation. We start with an observationally motivated view on star formation from a global perspective and outline the general paradigm of the life-cycle of molecular clouds, in which star formation is the key process to close the cycle. After that we focus on the thermal and chemical aspects in star forming regions, discuss turbulence and magnetic fields as well as gravitational forces. Finally, we review the most important stellar feedback mechanisms.Peer reviewedFinal Accepted Versio

    Search for leptophobic Z ' bosons decaying into four-lepton final states in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe
    corecore