19 research outputs found

    Fifteen years of research on oral–facial–digital syndromes: from 1 to 16 causal genes

    Get PDF
    Oral–facial–digital syndromes (OFDS) gather rare genetic disorders characterised by facial, oral and digital abnormalities associated with a wide range of additional features (polycystic kidney disease, cerebral malformations and several others) to delineate a growing list of OFDS subtypes. The most frequent, OFD type I, is caused by a heterozygous mutation in the OFD1 gene encoding a centrosomal protein. The wide clinical heterogeneity of OFDS suggests the involvement of other ciliary genes. For 15 years, we have aimed to identify the molecular bases of OFDS. This effort has been greatly helped by the recent development of whole-exome sequencing (WES). Here, we present all our published and unpublished results for WES in 24 cases with OFDS. We identified causal variants in five new genes (C2CD3, TMEM107, INTU, KIAA0753 and IFT57) and related the clinical spectrum of four genes in other ciliopathies (C5orf42, TMEM138, TMEM231 and WDPCP) to OFDS. Mutations were also detected in two genes previously implicated in OFDS. Functional studies revealed the involvement of centriole elongation, transition zone and intraflagellar transport defects in OFDS, thus characterising three ciliary protein modules: the complex KIAA0753-FOPNL-OFD1, a regulator of centriole elongation; the Meckel-Gruber syndrome module, a major component of the transition zone; and the CPLANE complex necessary for IFT-A assembly. OFDS now appear to be a distinct subgroup of ciliopathies with wide heterogeneity, which makes the initial classification obsolete. A clinical classification restricted to the three frequent/well-delineated subtypes could be proposed, and for patients who do not fit one of these three main subtypes, a further classification could be based on the genotype

    Impact of Optimized Breastfeeding on the Costs of Necrotizing Enterocolitis in Extremely Low Birthweight Infants

    Get PDF
    To estimate risk of NEC for ELBW infants as a function of preterm formula and maternal milk (MM) intake and calculate the impact of suboptimal feeding on NEC incidence and costs

    A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing

    Get PDF
    Purpose Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the “ClinVar low-hanging fruit” reanalysis, reasons for the failure of previous analyses, and lessons learned. Methods Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. Results We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). Conclusion The “ClinVar low-hanging fruit” analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock

    Center differences and outcomes of extremely low birth weight infants

    No full text
    Previous multicenter studies have shown significant center differences in neonatal characteristics and morbidities. This study evaluated center differences in outcome at 18 to 22 months among extremely low birth weight (ELBW; 401-1000 g) infants after adjusting for demographics and antenatal interventions, and it identified neonatal interventions associated with outcome differences. We assessed the outcome of 2478 liveborn infants who were admitted in 1993 and 1994 to the 12 centers of the Neonatal Research Network of the National Institute of Child Health and Human Development; 1483 (60%) infants survived to 18 to 22 months, and 1151 (78%) had comprehensive evaluations. Logistic regression analyses were performed to identify center differences and the association of 4 neonatal interventions--active resuscitation, postnatal steroids, ventilator treatment for < or =27 days, and full enteral feedings < or =24 days--with adverse outcomes (cerebral palsy, low Bayley scores, and neurodevelopmental impairment [NDI]), after adjusting for demographics and antenatal interventions. Using bivariate analyses, significant center differences were identified for mortality, antenatal and postnatal interventions, social and environmental variables, neonatal morbidities, and neurodevelopmental outcomes for the 12 centers. After adjustment for maternal and infant demographics and antenatal interventions, the percentage of ELBW infants who had died or had NDI at 18 to 22 months ranged from 52% to 85%. Active resuscitation and postnatal steroids were associated with increases of NDI of 11.8% and 19.3%, whereas shorter ventilation support and shorter time to achieve full enteral feeds were associated with decreases in NDI of 20.7% and 17.3%, respectively. There are large and disturbing differences among centers in outcomes at 18 to 22 months after adjusting for demographic and antenatal interventions. Center differences in postnatal interventions associated with differences in outcome can provide hypotheses for testing in clinical trials to improve outcome

    Breastfeeding the Low Birth Weight Preterm Infant

    No full text

    Death or Neurodevelopmental Impairment at 18 to 22 Months Corrected Age in a Randomized Trial of Early Dexamethasone to Prevent Death or Chronic Lung Disease in Extremely Low Birth Weight Infants

    No full text
    OBJECTIVE: To evaluate the incidence of death or neurodevelopmental impairment (NDI) at 18 to 22 months corrected age in subjects enrolled in a trial of early dexamethasone treatment to prevent death or chronic lung disease in extremely low birth weight infants. METHODS: Evaluation of infants at 18 to 22 months corrected age included anthropomorphic measurements, a standard neurological examination, and the Bayley Scales of Infant Development-II, including the Mental Developmental Index (MDI) and the Psychomotor Developmental Index (PDI). NDI was defined as moderate or severe cerebral palsy, MDI or PDI less than 70, blindness, or hearing impairment. RESULTS: Death or NDI at 18 to 22 months corrected age was similar in the dexamethasone and placebo groups (65 vs 66 percent, p= 0.99 among those with known outcome). The proportion of survivors with NDI was also similar, as were mean values for weight, length, and head circumference and the proportion of infants with poor growth (50 vs 41 percent, p=0.42 for weight less than 10(th) percentile). Forty nine percent of infants in the placebo group received treatment with corticosteroid compared to 32% in the dexamethasone group (p=0.02). CONCLUSION: The risk of death or NDI and rate of poor growth were high but similar in the dexamethasone and placebo groups. The lack of a discernible effect of early dexamethasone on neurodevelopmental outcome may be due to frequent clinical corticosteroid use in the placebo group

    BMC Health Serv Res

    No full text
    Improvement of coordination of all health and social care actors in the patient pathways is an important issue in many countries. Health Information (HI) technology has been considered as a potentially effective answer to this issue. The French Health Ministry first funded the development of five TSN ("Territoire de Soins Numérique"/Digital health territories) projects, aiming at improving healthcare coordination and access to information for healthcare providers, patients and the population, and at improving healthcare professionals work organization. The French Health Ministry then launched a call for grant to fund one research project consisting in evaluating the TSN projects implementation and impact and in developing a model for HI technology evaluation. EvaTSN is mainly based on a controlled before-after study design. Data collection covers three periods: before TSN program implementation, during early TSN program implementation and at late TSN program implementation, in the five TSN projects' territories and in five comparison territories. Three populations will be considered: "TSN-targeted people" (healthcare system users and people having characteristics targeted by the TSN projects), "TSN patient users" (people included in TSN experimentations or using particular services) and "TSN professional users" (healthcare professionals involved in TSN projects). Several samples will be made in each population depending on the objective, axis and stage of the study. Four types of data sources are considered: 1) extractions from the French National Heath Insurance Database (SNIIRAM) and the French Autonomy Personalized Allowance database, 2) Ad hoc surveys collecting information on knowledge of TSN projects, TSN program use, ease of use, satisfaction and understanding, TSN pathway experience and appropriateness of hospital admissions, 3) qualitative analyses using semi-directive interviews and focus groups and document analyses and 4) extractions of TSN implementation indicators from TSN program database. EvaTSN is a challenging French national project for the production of evidenced-based information on HI technologies impact and on the context and conditions of their effectiveness and efficiency. We will be able to support health care management in order to implement HI technologies. We will also be able to produce an evaluation toolkit for HI technology evaluation. ClinicalTrials.gov ID: NCT02837406 , 08/18/2016
    corecore