55 research outputs found

    Canagliflozin, dapagliflozin and empagliflozin monotherapy for treating type 2 diabetes: systematic review and economic evaluation

    Get PDF
    Background: Most people with type 2 diabetes are overweight, so initial treatment is aimed at reducing weight and increasing physical activity. Even modest weight loss can improve control of blood glucose. If drug treatment is necessary, the drug of first choice is metformin. However, some people cannot tolerate metformin, which causes diarrhoea in about 10%, and it cannot be used in people with renal impairment. This review appraises three of the newest class of drugs for monotherapy when metformin cannot be used, the sodium–glucose co-transporter 2 (SGLT2) inhibitors. Objective: To review the clinical effectiveness and cost-effectiveness of dapagliflozin (Farxiga, Bristol-Myers Squibb, Luton, UK), canagliflozin (Invokana, Janssen, High Wycombe, UK) and empagliflozin (Jardiance, Merck & Co., Darmstadt, Germany), in monotherapy in people who cannot take metformin. Sources: MEDLINE (1946 to February 2015) and EMBASE (1974 to February 2015) for randomised controlled trials lasting 24 weeks or more. For adverse events, a wider range of studies was used. Three manufacturers provided submissions. Methods: Systematic review and economic evaluation. A network meta-analysis was carried out involving the three SGLT2 inhibitors and key comparators. Critical appraisal of submissions from three manufacturers. Results: We included three trials of dapagliflozin and two each for canagliflozin and empagliflozin. The trials were of good quality. The canagliflozin and dapagliflozin trials compared them with placebo, but the two empagliflozin trials included active comparators. All three drugs were shown to be effective in improving glycaemic control, promoting weight loss and lowering blood pressure (BP). Limitations: There were no head-to-head trials of the different flozins, and no long-term data on cardiovascular outcomes in this group of patients. Most trials were against placebo. The trials were done in patient groups that were not always comparable, for example in baseline glycated haemoglobin or body mass index. Data on elderly patients were lacking. Conclusions: Dapagliflozin, canagliflozin and empagliflozin are effective in improving glycaemic control, with added benefits of some reductions in BP and weight. Adverse effects are urinary and genital tract infections in a small proportion of users. In monotherapy, the three drugs do not appear cost-effective compared with gliclazide or pioglitazone, but may be competitive against sitagliptin (Januvia, Boehringer Ingelheim, Bracknell, UK). Funding: The National Institute for Health Research Health Technology Assessment programme

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Multi-messenger Observations of a Binary Neutron Star Merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌ 1.7 {{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of {40}-8+8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 {M}ÈŻ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌ 40 {{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌ 9 and ∌ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.</p
    • 

    corecore