66 research outputs found

    HIV-associated neurosyphilis: Report of a fatal case due to fear of work-place stigma

    Get PDF
    Syphilis and HIV infection are two STI diseases that have bidirectional influence on the clinical course of each other. There is a high risk of neurological extension if syphilis is not diagnosed early or if the patient has a co-infection with HIV. Both diseases have stigma associated with them and could affect the compliance to treatment, as was the case with this young employee of the medical department of a Nigerian tertiary hospital. He was diagnosed with HIV/ neurosyphilis co-infection and responded to penicillin therapy, but the fear of stigma at his workplace has made him to abandon hospital treatment for unorthodox therapy, which unfortunately cost him his life.Syphilis et infection par le VIH sont deux maladies qui ont des STI bidirectionnel infl uence sur l\u2019\ue9volution clinique de l\u2019autre. Il ya un risque \ue9lev\ue9 de troubles neurologiques extension si la syphilis n\u2019est pas diagnostiqu\ue9 \ue0 un stade pr\ue9coce ou si le patient a une co-infection avec le VIH. Les deux maladies sont les stigmatiser et pourrait infl uer sur la conformit\ue9 du traitement, comme ce fut le cas avec ce jeune personnel m\ue9dical d\u2019un h\uf4pital tertiaire nig\ue9riane. Il a re\ue7u un diagnostic de neurosyphilis et a r\ue9pondu \ue0 la th\ue9rapie de p\ue9nicilline, mais la peur de la stigmatisation \ue0 son lieu de travail a fait de lui \ue0 renoncer \ue0 l\u2019h\uf4pital pour un traitement de th\ue9rapie peu orthodoxe qui, malheureusement, lui a co\ufbt\ue9 la vie

    Increased Hepatitis E Virus Seroprevalence Correlates with Lower CD4+Cell Counts in HIV-Infected Persons in Argentina

    Get PDF
    Hepatitis E virus (HEV) is a single-stranded RNA virus that can cause hepatitis in an epidemic fashion. HEV usually causes asymptomatic or limited acute infections in immunocompetent individuals, whereas in immunosuppressed individuals such as transplant recipients, HEV can cause chronic infections. The risks and outcomes of HEV co-infection in patients infected with human immunodeficiency virus (HIV) are poorly characterized. We used a third generation immunoassay to measure serum IgG antibodies specific for HEV in 204 HIV-infected individuals from Argentina and a control group of 433 HIV-negative individuals. We found 15 of 204 (7.3%, 95% CI 3.74-10.96%) individuals in the HIV-positive group to have positive HEV IgG levels suggestive of previous infection, compared to 19 of 433 (4.4%, 95% CI 2.5-6.3%) individuals in the HIV-negative control group (p = 0.12). Among HIV-positive individuals, those with HEV seropositivity had lower CD4 counts compared to those that were HEV seronegative (average CD4 count of 234 vs 422 mm(3), p = 0.01), indicating that patients with lower CD4 counts were more likely to be HEV IgG positive. Moreover, HEV seropositivity in patients with CD4 counts <200 mm(3) was 16%, compared to 4.5% in those with CD4 counts >200 mm(3) (p = 0.012). We found a positive PCR result for HEV in one individual. Our study found that increased seroprevalence of HEV IgG correlated with lower CD4 counts in HIV-infected patients in Argentina

    GM-CSF Signalling Boosts Dramatically IL-1Production

    Get PDF
    GM-CSF is mostly known for its capacity to promote bone marrow progenitor differentiation, to mobilize and mature myeloid cells as well as to enhance host immune responses. However the molecular actions of GM-CSF are still poorly characterized. Here we describe a new surprising facet of this “old” growth factor as a key regulator involved in IL-1βsecretion. We found that IL-1β release, a pivotal component of the triggered innate system, is heavily dependent on the signaling induced by GM-CSF in such an extent that in its absence IL-1β is only weakly secreted. GM-CSF synergizes with LPS for IL-1β secretion mainly at the level of pro-IL-1β production via strengthening the NF-κB signaling. In addition, we show that expression of Rab39a, a GTPase required for caspase-1 dependent IL-1β secretion is greatly augmented by LPS and GM-CSF co-stimulation suggesting a potential GM-CSF contribution in enhancing IL-1β exocytosis. The role of GM-CSF in regulating IL-1β secretion is extended also in vivo, since GM-CSF R−/− mice are more resistant to LPS-mediated septic shock. These results identify GM-CSF as a key regulator of IL-1β production and indicate GM-CSF as a previously underestimated target for therapeutic intervention

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO’s second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h95%0=3.47×10−25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering

    Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

    Get PDF
    On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is 5.0×1085.0\times {10}^{-8}. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of (+1.74±0.05)s(+1.74\pm 0.05)\,{\rm{s}} between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between 3×1015-3\times {10}^{-15} and +7×1016+7\times {10}^{-16} times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1-1.4 per year during the 2018-2019 observing run and 0.3-1.7 per year at design sensitivity

    CD16 Expression on Monocytes in Healthy Individuals but Not Schistosome-Infected Patients Is Positively Associated with Levels of Parasite-Specific IgG and IgG1

    Get PDF
    Human IgG1 antibody responses are associated with protection against Schistosoma haematobium infection and are now a target for schistosome vaccine development. This study aimed to investigate the relationship between total IgG and the IgG subclasses and the monocyte IgG receptor, known as FcγRIIIa or CD16, in schistosome exposed people. Systemic levels of schistosome-specific anti-adult worm total IgG and IgG subclass titres were measured by ELISA in 100 individuals from an S. haematobium endemic area in Zimbabwe and, using parametric statistical methods and regression analysis, related to the levels of CD16 expression on individuals' circulating monocytes, determined via flow cytometry. Monocyte CD16 expression rose with parasite-specific total IgG and IgG1 in healthy participants, but not in schistosome infected patients. Similar to parasite-specific IgG and IgG1, CD16 expression in healthy individuals is associated with protection against schistosome infection. This relationship indicates a mechanistic link between the innate and adaptive immune responses to helminth infection in protection against infection. Further understanding the elements of a protective immune response in schistosomiasis may aid in efforts to develop a protective vaccine against this disease.This work was supported by the World Health Organisation and the Wellcome Trust grant WT082028MA, the Thrasher Research Fund and the Medical Research Council grant LJA-544

    Observation of Gravitational Waves from a Binary Black Hole Merger

    Get PDF
    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 × 10−21. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410þ160 −180 Mpc corresponding to a redshift z ¼ 0.09þ0.03 −0.04 . In the source frame, the initial black hole masses are 36þ5 −4M⊙ and 29þ4 −4M⊙, and the final black hole mass is 62þ4 −4M⊙, with 3.0þ0.5 −0.5M⊙c2 radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger
    corecore