57 research outputs found

    A Comparative Study of Threshold-based Feature Selection Techniques

    Get PDF
    Abstract Given high-dimensional software measurement data, researchers and practitioners often use feature (metric) selection techniques to improve the performance of software quality classification models. This paper presents our newly proposed threshold-based feature selection techniques, comparing the performance of these techniques by building classification models using five commonly used classifiers. In order to evaluate the effectiveness of different feature selection techniques, the models are evaluated using eight different performance metrics separately since a given performance metric usually captures only one aspect of the classification performance. All experiments are conducted on three Eclipse data sets with different levels of class imbalance. The experiments demonstrate that the choice of a performance metric may significantly influence the results. In this study, we have found four distinct patterns when utilizing eight performance metrics to order 11 threshold-based feature selection techniques. Moreover, performances of the software quality models either improve or remain unchanged despite the removal of over 96% of the software metrics (attributes)

    An anchored chromosome-scale genome assembly of spinach improves annotation and reveals extensive gene rearrangements in euasterids.

    Get PDF
    Spinach (Spinacia oleracea L.) is a member of the Caryophyllales family, a basal eudicot asterid that consists of sugar beet (Beta vulgaris L. subsp. vulgaris), quinoa (Chenopodium quinoa Willd.), and amaranth (Amaranthus hypochondriacus L.). With the introduction of baby leaf types, spinach has become a staple food in many homes. Production issues focus on yield, nitrogen-use efficiency and resistance to downy mildew (Peronospora effusa). Although genomes are available for the above species, a chromosome-level assembly exists only for quinoa, allowing for proper annotation and structural analyses to enhance crop improvement. We independently assembled and annotated genomes of the cultivar Viroflay using short-read strategy (Illumina) and long-read strategies (Pacific Biosciences) to develop a chromosome-level, genetically anchored assembly for spinach. Scaffold N50 for the Illumina assembly was 389 kb, whereas that for Pacific BioSciences was 4.43 Mb, representing 911 Mb (93% of the genome) in 221 scaffolds, 80% of which are anchored and oriented on a sequence-based genetic map, also described within this work. The two assemblies were 99.5% collinear. Independent annotation of the two assemblies with the same comprehensive transcriptome dataset show that the quality of the assembly directly affects the annotation with significantly more genes predicted (26,862 vs. 34,877) in the long-read assembly. Analysis of resistance genes confirms a bias in resistant gene motifs more typical of monocots. Evolutionary analysis indicates that Spinacia is a paleohexaploid with a whole-genome triplication followed by extensive gene rearrangements identified in this work. Diversity analysis of 75 lines indicate that variation in genes is ample for hypothesis-driven, genomic-assisted breeding enabled by this work

    The United States COVID-19 Forecast Hub dataset

    Get PDF
    Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Experimental Perspectives on Learning from Imbalanced Data

    No full text
    We present a comprehensive suite of experimentation on the subject of learning from imbalanced data. When classes are imbalanced, many learning algorithms can suffer from the perspective of reduced performance. Can data sampling be used to improve the performance of learners built from imbalanced data? Is the effectiveness of sampling related to the type of learner? Do the results change if the objective is to optimize different performance metrics? We address these and other issues in this work, showing that sampling in many cases will improve classifier performance. 1

    Evaluating the Impact of Data Quality on Sampling

    No full text
    Learning from imbalanced training data can be a difficult endeavour, and the task is made even more challenging if the data is of low quality or the size of the training dataset is small. Data sampling is a commonly used method for improving learner performance when data is imbalanced. However, little effort has been put forth to investigate the performance of data sampling techniques when data is both noisy and imbalanced. In this work, we present a comprehensive empirical investigation of the impact of changes in four training dataset characteristics — dataset size, class distribution, noise level and noise distribution — on data sampling techniques. We present the performance of four common data sampling techniques using 11 learning algorithms. The results, which are based on an extensive suite of experiments for which over 15 million models were trained and evaluated, show that: (1) even for relatively clean datasets, class imbalance can still hurt learner performance, (2) data sampling, however, may not improve performance for relatively clean but imbalanced datasets, (3) data sampling can be very effective at dealing with the combined problems of noise and imbalance, (4) both the level and distribution of class noise among the classes are important, as either factor alone does not cause a significant impact, (5) when sampling does improve the learners (i.e. for noisy and imbalanced datasets), RUS and SMOTE are the most effective at improving the AUC, while SMOTE performed well relative to the F-measure, (6) there are significant differences in the empirical results depending on the performance measure used, and hence it is important to consider multiple metrics in this type of analysis, and (7) data sampling rarely hurt the AUC, but only significantly improved performance when data was at least moderately skewed or noisy, while for the F-measure, data sampling often resulted in significantly worse performance when applied to slightly skewed or noisy datasets, but did improve performance when data was either severely noisy or skewed, or contained moderate levels of both noise and imbalance.Class imbalance, class noise, classification, data quality, data sampling, binary classification
    corecore