51 research outputs found

    A pluralistic, socio-ecological approach to understand the long-term impact of mountain conservation: a counterfactual and place-based assessment of social, ecological and hydrological change in the Groot Winterhoek Mountains of the Cape Floristic Region

    Get PDF
    The problem: For protected areas to remain relevant, we need to understand their impact on a wide set of conservation objectives and environmental outcomes. We also need to evaluate how this influence relates to the socio-ecological environment within which they occur. This is a complex endeavour requiring a pluralistic approach, which draws on a wide range of interdisciplinary fields. Research question: This thesis addresses the following question: What effects do mountain protected areas have on ecosystem services over time and how does this influence relate to broader socio-economic and ecological drivers of landscape change? Aim and objectives: I use a pluralistic, socio-ecological framing to assess the impact of ~40 years of mountain protection, drawing on comparisons of ~30 and ~40 years before and after protection respectively, with an adjacent area of similar terrain informing scenarios of counterfactual conditions. I also investigate what types of values (economic and intrinsic) are important when determining the impact of mountain protected areas. Thesis approach and methods: I operationalise the concepts of socio-ecological systems, ecosystem services, land use transitions and counterfactuals to investigate socio-ecological change and how it relates to protected area impact in the Groot Winterhoek, a mountain catchment in the south-western Cape of South Africa. This mountain catchment is important for regional water supplies for agricultural and domestic uses and falls in the Cape Floristic Region, a global biodiversity hotspot. It is comprised of privately owned mountain wildlands and a wilderness-protected area, known as the Groot Winterhoek Wilderness Area, established in 1978 (gazetted in 1985) which forms part of the Cape Floristic Region World Heritage Site. I combine methods from social science, ecology, environmental geography, geomatics and hydrology to understand the history of land use and cover (land use/cover) and associated ecosystem service trade-offs, how they are perceived by landowners as well as their wider impact on the region. Specifically, I assess the impact of protection on land use/cover, vegetation, fire and water flows over the last ~50 years, by comparing and contextualising results of change within the protected area to alternative scenarios of “no protection” (the counterfactual conditions). Vegetation and land use/cover change inside the protected area were determined respectively using 72 repeat terrestrial photographs and vegetation surveys, and an analysis of orthorectified aerial imagery. Methods used to construct the counterfactual scenarios of mechanisms (e.g. changes in land use/cover) that would likely drive vegetation changes inside the protected area included: i) 60 repeat surveys and in-depth interviews with landowners adjacent or proximal to the protected area owning unprotected land of similar terrain to the protected area; and ii) land use/cover change analysis of orthorectified aerial imagery of adjacent unprotected land of similar terrain before and after protected area establishment. 4 This latter information was used to understand the role of the protected area in driving vegetation changes inside the protected area. Social, biophysical and remote sensing results were directly used to parameterise land use/cover components of a hydrological model to determine the influence of protection on water flows. Specifically, water flows were simulated for the current state of the environment inside the protected area as well as for several counterfactual scenarios i.e. the alternative land use/cover scenarios of “no protection”. These counterfactual scenarios included land use/cover at two-time steps of ~30 and ~8 years before protection and one-time step ~40 years after protection both inside and outside the protected area. Results: Long-term change in ecosystem service use outside the protected area on privately owned land of similar terrain to inside the protected area (Section 3): Over the last ~50 years, outside the protected area, there was a shift from livestock-based, subsistence agriculture and small-scale farming to a diversified set of ecosystem service uses. The combined area of grazing and wildflower harvesting declined by 39%, while the number of landowners using the mountains for personal nature-based recreation and ecotourism increased by 61% and 23% respectively. Agriculture intensified in suitable areas of mountain land with the number of landowners cultivating land increasing by 20%. Exogenous socioeconomic drivers associated with globalisation and economic growth were important causal mechanisms of land use change. Landowners valued mountain protection for intrinsic and non-use reasons (73-80% of landowners), including existence, bequest and option values, as well as for the indirect use of water supply (72% of landowners) in comparison with direct use reasons such as spiritual/cultural experiences and nature-based recreation inside the protected area (18 and 50% of landowners respectively). Personal, nature-based recreation outside the wilderness-protected area was associated with valuing the protection of mountain land for intrinsic and non-use reasons. Long-term vegetation change inside the protected area and plausible mechanisms driving vegetation change (Section 4): Inside the mountain protected area, fynbos vegetation cover increased on average between 11 and 30% and there were significant declines in bare ground and rock cover. In 5 accumulation and fire intensities. However, these latter changes in land use/cover also occurred outside the protected area (see results summarised for Section 3 above and Section 4 below) and therefore cannot be attributed to protected area establishment. Land use/cover and the influence on water flows inside the protected area compared to counterfactual scenarios of no protection (Section 5): Declines in grazing and changes to the fire regimes occurred regardless of the protected area boundaries. In the past, there was a high frequency of small, low intensity fires across the landscape, both inside and outside the protected area. More recently, fires have been actively suppressed and this resultsin the build-up of biomass and the development of extensive, high intensity fires which, under suitable conditions, burn large expanses of the mountain catchment. Hydrological modelling showed that a high intensity burning regime negatively affected streamflow regardless of protected area boundaries. Streamflow increased by more than 80% under high flow conditions and decreased by more than 40% under low flow conditions relative to an unburnt ‘natural’ scenario. Over the last 50 years there has also been a substantial increase in dams, buildings and roads and minor increases in cultivation outside the protected area. This has been avoided inside the protected area where these land use/cover classes declined. If the increase in these land use/cover types observed outside the protected area occurred inside the protected area this would have resulted in reductions in daily streamflow leaving the protected portion of the catchment. For example, outside the protected area reductions of 8% to 25% of streamflow were observed during mid and low flow conditions respectively, particularly during dry years, in comparison to a ‘natural’ scenario. In contrast, inside the protected area streamflow recovered from past conditions to more closely resemble the natural flow conditions of the catchment. Therefore, had the protected area not been established there would have been losses in streamflow from the catchment as well as an increase in the degree of fragmentation within this mountain area. However, with increased water storage and fragmentation outside the protected area has also come increased socio-economic opportunities such as employment and local opportunities for ecotourism and sustainable agriculture e.g. indigenous cut flows. This highlights the importance of maintaining various forms of land management systems (multifunctional landscapes) within mountain ecosystems but also the need to understand the sustainability of different land management system types. Determining appropriate land management systems for mountain areas should be based on a full understanding of the impacts on ecosystem service benefits and costs at local and regional levels between social groups both spatially and temporally. Broader significance: This thesis contributes to the conservation literature on two main fronts. Firstly, it contributes conceptually and theoretically to understanding the dynamics of ecosystem services in relation to mountain protection. Secondly, it contributes methodologically by using an inclusive, trans- and interdisciplinary research approach for evidence-based conservation at a place-based and landscape level. The study provides a case 6 study example of the positive impact that mountain protection has on water-related ecosystem services, notably by maintaining streamflow throughout high to low flow periods and during dry years. It also provides clear evidence that ecosystem service trade-offs do not remain constant over time and shows that intrinsic and non-use values are required when describing the importance of mountain protected areas. In terms of understanding the impact that protected areas have in mountain regions, the research shows that complex processes are at play that extend beyond the boundaries of a specific protected area in both time and space. Interactions between global and local drivers were found to be prominent causal mechanisms of socio-ecological change and ultimately determined the influence of mountain-protection on land use/cover, fire, vegetation and water-related ecosystem services. The thesis emphasises that counterfactual framings are necessary to understand and attribute the impacts of protected areas on environmental outcomes, however pluralism and socio-ecological approaches are critical to determine plausible counterfactual conditions. This thesis focused only on landowners adjacent and proximal to the protected area owning the majority of mountain catchment land of similar terrain. It is likely that multiple socioeconomic trade-offs have occurred between different social groups and generations at both local and regional levels. Understanding how the disadvantages and benefits of the impacts of protected areas are apportioned across the landscape and temporally is an aspect that requires future research. Central to this would be to fully consider how human well-being is influenced both upstream and downstream, including at regional levels, and between social groups and across generations. Considering the impact of protected areas on the full range of ecosystem services and linking this to societal preferences and perceptions should be incorporated into the overall goal of developing an evidence base for conservation. This is because it is both scientific evidence and societal change that can determine protected area persistence and thus long-term protected area impact

    A socio-ecological approach for identifying and contextualising spatial ecosystem-based adaptation priorities at the sub-national level

    Get PDF
    Climate change adds an additional layer of complexity to existing sustainable development and biodiversity conservation challenges. The impacts of global climate change are felt locally, and thus local governance structures will increasingly be responsible for preparedness and local responses. Ecosystem-based adaptation (EbA) options are gaining prominence as relevant climate change solutions. Local government officials seldom have an appropriate understanding of the role of ecosystem functioning in sustainable development goals, or access to relevant climate information. Thus the use of ecosystems in helping people adapt to climate change is limited partially by the lack of information on where ecosystems have the highest potential to do so. To begin overcoming this barrier, Conservation South Africa in partnership with local government developed a socio-ecological approach for identifying spatial EbA priorities at the sub-national level. Using GIS-based multi-criteria analysis and vegetation distribution models, the authors have spatially integrated relevant ecological and social information at a scale appropriate to inform local level political, administrative, and operational decision makers. This is the first systematic approach of which we are aware that highlights spatial priority areas for EbA implementation. Nodes of socio-ecological vulnerability are identified, and the inclusion of areas that provide ecosystem services and ecological resilience to future climate change is innovative. The purpose of this paper is to present and demonstrate a methodology for combining complex information into user-friendly spatial products for local level decision making on EbA. The authors focus on illustrating the kinds of products that can be generated from combining information in the suggested ways, and do not discuss the nuance of climate models nor present specific technical details of the model outputs here. Two representative case studies from rural South Africa demonstrate the replicability of this approach in rural and peri-urban areas of other developing and least developed countries around the world

    Anthropogenic influence on the drivers of the Western Cape drought 2015-2017

    Get PDF
    In the period 2015-2017, the Western Cape region has suffered from three consecutive years of below average rainfall - leading to a prolonged drought and acute water shortages, most prominently in the city of Cape Town. After testing that the precipitation deficit is the primary driver behind the reduced surface water availability, we undertake a multi-method attribution analysis for the meteorological drought, defined in terms of a deficit in the 3 years running mean precipitation averaged over the Western Cape area. The exact estimate of the return time of the event is sensitive to the number of stations whose data is incorporated in the analysis but the rarity of the event is unquestionable, with a return time of more than a hundred years. Synthesising the results from five different large model ensembles as well as observed data gives a significant increase by a factor of three (95% confidence interval 1.5-6) of such a drought to occur because of anthropogenic climate change. All the model results further suggest that this trend will continue with future global warming. These results are in line with physical understanding of the effect of climate change at these latitudes and highlights that measures to improve Cape Town's resilience to future droughts are an adaptation priority

    Research priorities for climate mobility

    Get PDF
    The escalating impacts of climate change on the movement and immobility of people, coupled with false but influential narratives of mobility, highlight an urgent need for nuanced and synthetic research around climate mobility. Synthesis of evidence and gaps across the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report highlight a need to clarify the understanding of what conditions make human mobility an effective adaptation option and its nuanced outcomes, including simultaneous losses, damages, and benefits. Priorities include integration of adaptation and development planning; involuntary immobility and vulnerability; gender; data for cities; risk from responses and maladaptation; public understanding of climate risk; transboundary, compound, and cascading risks; nature-based approaches; and planned retreat, relocation, and heritage. Cutting across these priorities, research modalities need to better position climate mobility as type of mobility, as process, and as praxis. Policies and practices need to reflect the diverse needs, priorities, and experiences of climate mobility, emphasizing capability, choice, and freedom of movement

    The Primary Prevention of PTSD in Firefighters: Preliminary Results of an RCT with 12-Month Follow-Up

    Get PDF
    AIM: To develop and evaluate an evidence-based and theory driven program for the primary prevention of Post-traumatic Stress Disorder (PTSD). DESIGN: A pre-intervention / post-intervention / follow up control group design with clustered random allocation of participants to groups was used. The "control" group received "Training as Usual" (TAU). METHOD: Participants were 45 career recruits within the recruit school at the Department of Fire and Emergency Services (DFES) in Western Australia. The intervention group received a four-hour resilience training intervention (Mental Agility and Psychological Strength training) as part of their recruit training school curriculum. Data was collected at baseline and at 6- and 12-months post intervention. RESULTS: We found no evidence that the intervention was effective in the primary prevention of mental health issues, nor did we find any significant impact of MAPS training on social support or coping strategies. A significant difference across conditions in trauma knowledge is indicative of some impact of the MAPS program. CONCLUSION: While the key hypotheses were not supported, this study is the first randomised control trial investigating the primary prevention of PTSD. Practical barriers around the implementation of this program, including constraints within the recruit school, may inform the design and implementation of similar programs in the future. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry (ANZCTR) ACTRN12615001362583

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants

    Get PDF
    Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Emergence of methicillin resistance predates the clinical use of antibiotics.

    Get PDF
    The discovery of antibiotics more than 80 years ago has led to considerable improvements in human and animal health. Although antibiotic resistance in environmental bacteria is ancient, resistance in human pathogens is thought to be a modern phenomenon that is driven by the clinical use of antibiotics1. Here we show that particular lineages of methicillin-resistant Staphylococcus aureus-a notorious human pathogen-appeared in European hedgehogs in the pre-antibiotic era. Subsequently, these lineages spread within the local hedgehog populations and between hedgehogs and secondary hosts, including livestock and humans. We also demonstrate that the hedgehog dermatophyte Trichophyton erinacei produces two ÎČ-lactam antibiotics that provide a natural selective environment in which methicillin-resistant S. aureus isolates have an advantage over susceptible isolates. Together, these results suggest that methicillin resistance emerged in the pre-antibiotic era as a co-evolutionary adaptation of S. aureus to the colonization of dermatophyte-infected hedgehogs. The evolution of clinically relevant antibiotic-resistance genes in wild animals and the connectivity of natural, agricultural and human ecosystems demonstrate that the use of a One Health approach is critical for our understanding and management of antibiotic resistance, which is one of the biggest threats to global health, food security and development

    Gain and loss of TASK3 channel function and its regulation by novel variation cause KCNK9 imprinting syndrome

    Get PDF
    Background: Genomics enables individualized diagnosis and treatment, but large challenges remain to functionally interpret rare variants. To date, only one causative variant has been described for KCNK9 imprinting syndrome (KIS). The genotypic and phenotypic spectrum of KIS has yet to be described and the precise mechanism of disease fully understood. Methods: This study discovers mechanisms underlying KCNK9 imprinting syndrome (KIS) by describing 15 novel KCNK9 alterations from 47 KIS-affected individuals. We use clinical genetics and computer-assisted facial phenotyping to describe the phenotypic spectrum of KIS. We then interrogate the functional effects of the variants in the encoded TASK3 channel using sequence-based analysis, 3D molecular mechanic and dynamic protein modeling, and in vitro electrophysiological and functional methodologies. Results: We describe the broader genetic and phenotypic variability for KIS in a cohort of individuals identifying an additional mutational hotspot at p.Arg131 and demonstrating the common features of this neurodevelopmental disorder to include motor and speech delay, intellectual disability, early feeding difficulties, muscular hypotonia, behavioral abnormalities, and dysmorphic features. The computational protein modeling and in vitro electrophysiological studies discover variability of the impact of KCNK9 variants on TASK3 channel function identifying variants causing gain and others causing loss of conductance. The most consistent functional impact of KCNK9 genetic variants, however, was altered channel regulation. Conclusions: This study extends our understanding of KIS mechanisms demonstrating its complex etiology including gain and loss of channel function and consistent loss of channel regulation. These data are rapidly applicable to diagnostic strategies, as KIS is not identifiable from clinical features alone and thus should be molecularly diagnosed. Furthermore, our data suggests unique therapeutic strategies may be needed to address the specific functional consequences of KCNK9 variation on channel function and regulation
    • 

    corecore