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Abstract
In the period 2015–2017, theWesternCape region has suffered from three consecutive years of below
average rainfall—leading to a prolonged drought and acutewater shortages,most prominently in the
city of Cape Town. After testing that the precipitation deficit is the primary driver behind the reduced
surfacewater availability, we undertake amulti-method attribution analysis for themeteorological
drought, defined in terms of a deficit in the 3 years runningmean precipitation averaged over the
WesternCape area. The exact estimate of the return time of the event is sensitive to the number of
stationswhose data is incorporated in the analysis but the rarity of the event is unquestionable, with a
return time ofmore than a hundred years. Synthesising the results from five different largemodel
ensembles as well as observed data gives a significant increase by a factor of three (95% confidence
interval 1.5–6) of such a drought to occur because of anthropogenic climate change. All themodel
results further suggest that this trendwill continuewith future global warming. These results are in
linewith physical understanding of the effect of climate change at these latitudes and highlights that
measures to improve CapeTown’s resilience to future droughts are an adaptation priority.

1. Introduction

The Western Cape province in South Africa experi-
enced overall below average rainfall over the period
2015–2017. This led to the worst drought since 1904
and an unprecedented water shortage (Botai et al 2017,
Wolski 2018). Furthermore, this extreme climate
event has taken place while observed and modeled
long-term aridity in most of Southern Africa is
increasing (Shongwe et al 2009, Feng and Fu 2013,
Huang et al 2017, Lehner et al 2017), consistent with
expectation from the large-scale dynamic and thermo-
dynamic response of the hydrologic cycle to warming
(Held and Soden 2006, Cook et al 2015). Besides this

general trend towards more arid conditions, southern
South Africa is also among the few regions where
precipitation variability on daily to interannual time
scales is expected to decrease with warming (Pender-
grass et al 2017) a decrease that has been in fact already
detected in a broader defined South African region
(Gergis andHenley 2017).

The capital city of the region, Cape Town, which is
the house of the South African Parliament, was parti-
cularly affected by the recent rainfall deficit and the
associated water crisis, with the anomaly heavily
impacting the area directly surrounding the six large
reservoirs that provide fresh water to the city of Cape
Town. In this local region, the three years anomaly is
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an extremely rare event with a return period exceeding
300 years, while over the greater Western Cape the
extremeness of the rainfall deficit has an occurrence
probability of one event in approximately 150 years.
However, as is usually the case (Angelil et al 2014) the
result is very sensitive to the number of stations and
length of station data included (see below) as well as
the spatial event definition. The meteorological analy-
sis of the event indicates that below average total rain-
fall in the region was caused by a strong rainfall
anomaly in the shoulder seasons (March–May and
August–October), while the core of the rainy winter
season (June and July) was characterised by near nor-
mal rainfall (Wolski et al 2018).

The most prominent impact of the drought mani-
fested through low runoff from source catchments to
water supply reservoirs that rely on the annual rainy-
season replenishment. This led to insufficient water
storage to satisfy the water demand of ∼3.7 million
residents of Cape Town and irrigated agriculture in the
Western Cape from the end of 2017 and throughout
the dry season into 2018. The diminished runoff and
thus the hydrological drought as well as the reservoir
storage was likely also affected by higher than normal,
but not unprecedented, temperatures, lower relative
humidity and therefore increased evaporation.

The water crisis associated with the drought was
very extreme at the beginning of 2018 to the point that
the city of Cape Townwas expected to run out of water
inMarch 2018 (reservoir replenishment from the 2018
rainy season was not expected to happen before June).
As the city was preparing for ‘day zero’—the day on
which all pipes would run dry and residents would
have to get water from communal taps—extreme
restrictions on water usage were implemented starting
from August 2017 in an attempt to save water and to
push out ‘day zero’ further into the future. The water
conservation efforts implemented by citizens helped
to significantly cut down consumption. One of these
restrictions was however to completely cease irrigation
(in February 2018). Thus, while ‘day zero’ could be
avoided (City of Cape Town Day Zero Dashboard
http://coct.co/water-dashboard/), losses are very
large in the agricultural sector (e.g. Phakathi, B., 5 Feb-
ruary 2018, ‘Farmers lose R14bn as Cape drought
bites’. Business Day, RSA).

Even though theworst case scenario has been aver-
ted, at least for the time being, the question of building
resilience for future climatic extremes and longer term
planning remains. In short, the question to be asked is
whether and to what extent the prolonged drought
situation is indeed still a very rare event or, if in a chan-
ging climate, a drought like this has become more
common, and will continue to occur with increased
frequency. The question is thus whether anthro-
pogenic climate change had a role in the lack of rainfall
itself, but also whether increasing temperatures have
exacerbated the impacts of the below average pre-
cipitation. Or, in other words, should the Western

Cape region and with that, the city of Cape Town be
investing heavily in drought resilience, e.g. in infra-
structure projects to increase its water storage capacity
and diversify its sources of water (e.g. desalination
plants) or are we over-focusing on drought which
remains a very rare event taking away adaptation
resources from more relevant and different risks (e.g.
flooding)?

Here, we investigate these questions primarily
from a meteorological perspective by looking at the
impact of climate change on the rainfall deficit. We
provide the first step in analyzing the causes of a com-
plex phenomenon but acknowledge that they do not
stop at large scale rainfall but also include complex
interactions of catchment size, land management,
local precipitation, wind and temperature. None-
theless, the lack of rainfall in the larger region of the
Western Cape is a key driver of the drought and one
for which a qualified quantification of the role of
anthropogenic climate change is possible, as it is the
spatial scale where a number of large ensembles of cli-
mate model simulations are available, which allow for
a multi-model event attribution study. Using multiple
independent models is key to enable an assessment of
confidence in the attribution results.

The analysis uses the recommended multi-
method approach (NAS 2016) and follows the stan-
dard structure of event attribution analyses (e.g.
Otto 2017, Philip et al 2018) by defining an event in
section 2, describing data and models used in
section 3, assessing trends in section 4 and attributing
the event in section 5. Section 6 synthesis the results
which are put in the context of vulnerability and expo-
sure in section 7. The paper ends with a brief
conclusion.

2. Event definition

Drought is a complex phenomenon (e.g. Mishra and
Singh 2010,Hao et al 2018) and notoriously difficult to
attribute to anthropogenic climate change (e.g. Otto
et al 2015, Martins et al 2018, Uhe et al 2017, Philip
et al 2018). The regional extent of the drought is not
always consistent when looking from the point of view
of the impacts and meteorological drivers. In the case
of the Western Cape drought, 30%–50% below
average rainfall in a relatively large region from 35 to
31°S and from 18 to 21°E persisted for three years
(2015–2017) (figure 1(a)). In a much smaller region
around the reservoirs securing the water availability in
the metropolitan area of Cape Town the negative
rainfall anomaly was particularly large and led to a
severe water crisis in the city. While crucial for Cape
Town, the local drought around the reservoirs imme-
diately surrounding the city is of a spatial extent that
requires high-resolution climate and hydrological
models to disentangle in detail the drivers of the water
crisis at the urban scale. However, these reservoirs are
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part of a larger system of water management in a wide
Western Cape region which is well described by the
rectangular box over which our analyses are focused
(figure 1(b)).

In order to identify the respective roles of pre-
cipitation and evapotranspiration as a function of
temperature we analyse a simple hydrological model
representing the water stored in the reservoirs sup-
porting Cape Town’s fresh water supply (supplemen-
tarymaterial is available online at stacks.iop.org/ERL/
13/124010/mmedia for details). Figure 1(c) shows
observations of water stored in the reservoirs and the
hydrological model simulations when using observed
rainfall and station-based Penman–Monteith poten-
tial evapotranspiration (ET0: Allen et al 2005) to drive
the model. The effects of the drought can be clearly
seen in the last three years of the timeseries. To identify
the importance of rainfall compared to temperature
we repeat the simulation but once using climatological
rainfall with observed ET0 and once using climatolo-
gical ET0 with observed rainfall (figure 1(d)). While
the 2015–2017 anomalies in ET0 translate into amini-
mal, almost imperceptible impact on water resources,
the 2015–2017 rainfall anomalies have a very strong
impact on the reservoir storage. The results of this
simulation are conditional on the sensitivity of the
hydrological model to ET0 and rainfall, respectively
but give a strong indication that it was primarily the
lack of rainfall driving the drought.

We therefore focus on the regional scale drought
of the Western Cape in the area (land points in 31°–
35°S, 18°–21°E) covering a broadly defined southern
part of the Western Cape’s winter rainfall region (Phi-
lippon et al 2012) and encompassing the headwaters
catchments of Berg and Breede Rivers, within which
Cape Town supply reservoirs are located, as well as the
region of intensely irrigated agriculture surrounding
the metropolitan area of Cape Town. In this region
rainfall is predominantly frontal, brought in by a series
of cyclones forming within the temperate westerlies; it
exhibits an interannual variability that has been asso-
ciated with SST and sea ice anomalies in the central
South Atlantic and Southern Ocean (Reason et al
2002), and with the position of the Westerly Jet and
state of circumpolar pressure anomalies described by
the southern annular mode (SAM, Reason and Jagad-
heesha 2005, Dieppois et al 2016). While some of the
potential drivers exhibit significant trends (SAM,
Arblaster and Meehl 2006) the connection with Wes-
tern Cape precipitation is not necessarily causal, and
explain only a fraction of the observed variability. The
relationship of the region’s rainfall with ENSO is also
veryweak (Philippon et al 2012).

The focus on the broader region rather than on the
relatively small area of water supply reservoirs and
their catchments is dictated mostly by the need for
compatibility in scale with attribution models/meth-
ods that are currently available. The main analysis is

Figure 1. (a)Anomalies of the 2015–2017 precipitation in this region relative to 1998–2014 (b) the study region (grey square) and the
location of the reservoirs (blue square). (c) Simulations of reservoir storagewith a simple hydrologicalmodel accounting for
catchment rainfall, evapotranspiration, soilmoisture, reservoir evapotranspiration andwater use, (d)model simulationswith
climatological (2000–2014) rainfall and potential evapotranspiration in the postOctober 2014 period, with other variables
unchanged.
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based on three years rainfall average and focuses on
whether and to what extent anthropogenic climate
change played a role in the lack of rainfall. In addition,
potential evapotranspiration as a measure of drought
can be useful, as it affects irrigated agriculture by
determining the climate-driven demand for water,
counterpart to the natural supply from precipitation
(e.g. Hartmann 1994). However, due to the fact that
the event is extremely rare in the ET0 reanalysis data
andmodel simulations differ greatly over this variable,
we do not assess the attributable signal in ET0.

3.Data andmethods

While acknowledging that different climate models
have different strengths and weaknesses, we employ
the standardmulti-method approach to event attribu-
tion to analyse whether and to what extent anthropo-
genic climate change altered the likelihood of the
2015–2017Western Cape drought. Themulti-method
approach enables an assessment of the confidence in
the resulting attribution statement. By using coupled
models as well as atmosphere-only models this also
allows to see whether atmosphere-only models are
biased towards a particular attribution result as found
by Fischer et al (2018) in the case of temperature
extremes. The description of themodels used and their
evaluation can be found in the SI. In addition to two
coupled climate models (EC-Earth) and two atmos-
phere-landmodels (HadGEM3-A,HadAM3P), we use
station data, and the gridded observational data series
CRU-TS 4.01 updated to 2017 with the GPCC
monitoring analysis,

To evaluate the models’ ability to reproduce the
observed rainfall distribution we fit a Gaussian or
Generalized Pareto Distribution (GPD) to the obser-
vational data (see below) as well as to the model data
(see SI). We compare the model fit parameters with
the fit parameters obtained from observational data
(figure S2). We only use themodel if the fit parameters
of the model are within the 95% confidence interval
(CI) of those from observations. For this event we use
the dispersion parameter σ/μ (the standard deviation
over themean) as the evaluation criteria.

3.1.Observational data
There are >200 South African Weather Service
meteorological stations providing daily rainfall data in
the region which we use as basis of an analysis of
observational data. A gap-screening was used to
removemonths with fewer than 20 data days and years
with fewer than 11 data months. Only 18 stations have
more than 90% of data years in the 1930–2017 period
and cover the 2015–2017 period.

The composite rainfall (mean of all station series)
shows a non-significant positive linear trend
(2.4 mm/decade (p=0.34) in 1930–2017, and
5.4 mm/decade (p=0.06) in 1930–2014). Based on a

stationary Gaussian fit to the three years running
mean (excluding the event), the 2015–2017 event
return interval is 150with a 95%CI of 56–540 years.

In order to be able to compare models with obser-
vations we use the gridded observed data CRUTS 4.01
at 0.5° horizontal resolution (Harris et al 2014). This
dataset does not include 2017, which was taken from
the GPCC monitoring analysis (Schneider et al 2015).
The CRU TS dataset has approximately constant sta-
tion density from 1901–2016, whereas GPCC has
many fewer stations before 1950 and after 1998.

The mean in this dataset shows that most rain falls
in the south-western part of the index region where
the winter westerlies meet the mountains (figure S1).
The northern part is much drier. The trends over
1901–2017 (regression on the global mean temper-
ature, GMST) reflect this difference, with drying
trends in the south and wetting trends in the north.
The latter are much smaller in absolute changes, but
similar as a fraction of the mean precipitation (not
shown). The CRU data for this region is based on a
limited number of stations (about 50 contribute) and
therefore cannot reflect the complexities of the oro-
graphically-driven rainfall in this region, whichmeans
that individual places can have different trends from
the area average. This explains the difference between
the trend in the CRU analysis with the the trend in the
station composite.

A Gaussian distribution whose parameters scale
with a 4 years smoothed global mean surface temper-
ature time series (Hansen et al 2010) is fitted to the
area-averaged precipitation (figure 2) and shows a
downward trend with GMST that is however not sig-
nificant when excluding the event itself from the data
(p≈0.12 two-sided). The low number of indepen-
dent data points (38) in the fit causes the trend to be
poorly constrained: it can be between−12% and+3%
since 1901with the best fit−7%.

The current return period of the 2015–2017
3 years annual mean precipitation is approximately
150 years for the observed value of 0.72 mm d−1. We
use the (rounded) 100 years return time event of
three years running mean precipitation in the selected
Western Cape region (land area of 31°–35°S, 18°–21°
E) as event definition, noting that the changes in prob-
ability depend only weakly on the return time chosen.
We furthermore use the fit-parameters from a Gaus-
sian distribution to evaluate the models. We allow for
amultiplicative bias correction but ensure that the dis-
persion parameter σ/μ is compatible with the 95%
uncertainty range of 9%–12% from theCRUdatafit.

4. Attribution to anthropogenic factors

Using themethods andmodels described above and in
the SI we calculate the ratios for a change of the 1 in
100 years event as defined above with respect to a
world that might have been without climate change as
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well as how the likelihood of such an event could
change in a world 2 °C warmer than preindustrial,
1 °C warmer than today. While the term probability
ratio would be more accurate we use the established
term risk ratio (RR) to determine the ratio between the
likelihood of the event occurring in today’s climate
compared to the occurrence likelihood in the histor-
ical climate (RR) and in a 2 °C warmer world (RR2.0).
We also estimate how the intensity of a 1 in 100 years
event today has changed compared to a 1 in 100 years
event in the past. Table S1 gives an overview of the
results which are summarised in figure 4 below. There
are differences in the framing in these different
models, discussed in section 6, as well as differences in
the scenarios used. Because the latter have less
influence on the overarching result than the former we
use the scenarios for which more simulations are
available.

4.1.HadGEM3-A
A fit of the regional average 3 years mean precipitation
to a Gaussian distribution for the years 1960–2016
gives a RR of 2.1 (1.1...3.8) relative to 1900. We do not
use the extrapolation to a 2 °Cwarmerworld indicated
infigure 3(a).

4.2.Weather@home
In the weather@home (figure 3(b)) the intensity of 100
years event is 0.452 mm d−1 (95% CI: 0.449, 0.454) in
the natural ensemble, 0.442 mm d−1 (95% CI: 0.438,
0.445) in the all forcing ensemble, and 0.412 mm d−1

(95% CI: 0.410, 0.414) in the 2 °C future ensemble. As
the present day simulations are centred around the
year 2000 we scale the resulting RRs by the increase in
GMST since then. A 1 in 100 years event in the actual
scenario would have been a 1 in 263.2 years event
(95% CI: 176.4, 416.0) under the counterfactual
scenario, while such eventwill be a 1 in 26.5 years event
(95% CI: 21.6, 33.3) under the 2 °C future scenario.
Hence, for an event with return period of 100 years the
RR between the actual and natural ensembles (RR) is
2.63 (95% CI: 1.76, 4.16) while the RR between the
2 °C future and actual ensembles (RR2.0) is 3.77 (95%
CI: 3, 4.62).

4.3. EC-Earth
A fit of a Gaussian distribution that scales with the
modelled globalmean temperature (figure 3(c)) gives a
RR of 3.98 (2.7...7.78) for 2015 relative to 1900, or
equivalently a change in relative precipitation of
−4.9% (−7.4% to−3.7%). In 1900 this still was a 1 in
about 400 years event

For the projections, 2050 represents a 2°Cwarmer
world relative to late 19th century in EC-Earth, by then
the probability has increased by an additional factor of
about three.

4.4. CESM
A Gaussian does not describe the low tail of the
distribution well, so we use a Generalised Pareto
Distribution (GPD) fitted to the highest 20%. As a
covariate, the model global ensemble mean surface air

Figure 2CRUTS 4.01 data averaged over the land points in 31°–35°S, 18°–21°E and over three years (as a runningmean)fitted to a
Gaussian distribution that scales with smoothed globalmean temperature. (a) Individual data points (asterisks) andmeanμ,μ-σ and
μ-2σ (lines) as a function of t globalmean temperature (GISTEMP, four years runningmean). The last point (2015–2017, purple)was
not included in thefit (the value for 2017was taken from theGPCCmonitoring analysis). (b)Return period of the 2015–2017 event in
the current climate (red) and the climate of around 1900 (blue) as inferred by the corresponding values of globalmean temperature.
The purple line depicts the 2015–2017 event.
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temperature is used. The Large Ensemble using
RCP8.5 gives a RR of 3.3 (1.7–10) for three years low
precipitation events with a return time of 100 years
relative to 1920. Using the temperature difference
between 1900–1920 of 0.26 °C this corresponds to a
RR relative to 1900 of 4.6 (2.4–13). This corresponds
to a change in precipitation for these extremes of
−8.8% (−3.7% to −13%). Note that the reference
period of 1900 is derived from the single ensemble
member that is available for the period starting in
1850, as a 20 years average value around the 1900 date.
The global mean temperature reaches 1 °C above 2015
in 2040, so we take that year as the nearest equivalent
to a 2 °C climate. The RR from 2015–2040 is found to
be 3.0 (2.7–4.3) in this large ensemble (note that the
additional years of data decrease the width of the
uncertainty bounds).

The samemodel with amedium-sized ensemble of
historical/RCP4.5 scenarios gives a RR of 2.7 (1.0–5.2)
over the period from 1900–2017, corresponding to a
change of three years mean precipitation extremes of
−5.8% (−9.6% to+2.4%), using only data up to 2017
in the fit. The change fromnow to 2050, the timewhen
the RCP4.5 scenario pushes the global mean temper-
ature to 1 °C over the 2015 one, is a factor 1.9 (1.4–2.9)
using data up to 2050.

4.5. CMIP5
When normalising each climate model multiplica-
tively to the same mean we obtain a smooth CDF that
is described well by a Gaussian up to return times of
about 100 years (figure 3(f)). This fit gives a RR of 3.5
with a 95% range of 2.7–4.1. This corresponds to a

Figure 3. (a)Return time plot of three yearsmean precipitation inHadGEM3A in natural ensemble (blue), all forcings ensemble (red)
and extrapolated for 2045 (yellow); (b) as in (a) for weather@homewith the 2 °C future ensemble (yellow); (c) as in (a) for the EC-
Earthmodel; (d) return times in theCESMLarge Ensemble driven by the historical/RCP8.5 scenario in 1920–1922 (blue), 2015–2017
(red) and 2040–2042 (orange (corresponding to a 2 °Cworld; (e)) as in (d)) for theMediumEnsemble driven by historical/RCP4.5, in
which a 2 °Cglobalmean temperature is represented by the year 2050; (f) as in (a) for the 42models of theCMIP5 ensemble historical/
RCP4.5, each normalised to a commonmean. The data up to 2017werefitted to aGaussian distribution/Generalized Pareto on the
case of CESM (lines). The event is defined by the current return time of 100 years.
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decrease in three years mean precipitation of 6.6%
(6.5%–8.6%) up to 2015–2017.

5. Synthesis

In the period 2015–2017, theWestern Cape region has
suffered from three consecutive years of below average
rainfall with particularly poor rains in March to May
and August to October—leading to drought condi-
tions and water shortages. Given the dominance of the
precipitation deficit over evaporative losses in driving
the reduced surface water availability, we adopt a
perspective of meteorological drought and define the
event for the main analysis as the three years running
mean precipitation deficit, for rainfall averaged over
the area 31°−35°S, 18°–21°E. A multi-method attri-
bution was performed, based on observational pre-
cipitation analyses (station data and CRU TS gridded
data based on stations), and multiple climate models’
simulations of precipitation (EC-EARTH, weather@-
home, CESM,HadGEM3-A) to examine the rarity and
changes in probability of such a prolonged rainfall
deficit. For comparison and to assess other important
factors we also investigated the potential evapotran-
spiration over the same timeframe and spatial area in
ERA-interim reanalysis data. We do not compare this
result with model analyses as none of the models for
which we calculated ET0 reproduce the distribution of
ET0 calculated from the observations in a way that
would meet the minimum criteria of a similar σ/μ
dispersion coefficient.

The overall results are in good agreement with
respect to the sign and significance of the change in
probability towards an increased risk of such an event
with anthropogenic forcing. The only exception is the
analysis of the station data, which however is very sen-
sitive to the choices of which stations to include in the
assessment due to the large differences in trends over
the study area (figure 2(b)). Return periods for the
event in the station data very between about 100 and
300 years depending on whether only long term sta-
tions are included or not. The gridded data provide a
return time of about a 150 years but with a very large
uncertainty due to the large variability of precipitation.
Irrespective of these uncertainties, it clearly was a rare
event. Given the uncertainty around the return time
and the fact that results are more robust for less
extreme events we use the 1 in 100 years event in the
present day climate for the low end of three years aver-
age precipitation as the definition of the event.

Using CRUTS as the observed data set for the ana-
lysis, the best guess is an increase in risk of 3.5 but the
result is not significant (p=0.12). The small number
of stations contributing to the CRU data estimate,
combining both weak and strong drought signals
because of the complex topography of the region is
one reason for the uncertainty in the observational
analysis. Further, the length of the station data is likely

also important: the analysed region has a quasi
40 years component (Dieppois et al 2016) that under-
lies the previous severe droughts recorded in 1930s
and 1970s, and the records’ length is bound to reflect
thismultidecadal variability in rainfall.

Combining the observational analysis as well as
the models and using a simple average to synthesise
the results, the likelihood of an event like the observed
2015–2017 drought has increased by a factor of 3.3
(1.4–6.4). Unlike for other drought analyses in other
parts of Africa, this is a very clear result with anthro-
pogenic climate change having significantly increased
the likelihood of such a drought to occur.

Although there are differences in precipitation
trends between the models, the CI obtained from
observations encompasses the CIs of all model results.
In the weather@home model, as well as HadGEM3A
and CMIP5 the probability ratio is defined as the
change in probability between the present day and
preindustrial conditions. In EC-Earth and CESM we
use the 16 or 40 (respectively) ensemblemembers over
the historical period (1900–2016) and perform the
same analysis as in the observations. The assumption
is that the climate around 1900 is similar to the pre-
industrial climate due to the cooling effect of a few
large volcanic eruptions compensating the small
greenhouse warming up to that time (Hawkins et al
2017). Despite these differences in framing the results
are consistent..

In addition to the attribution analysis we also
assess how the likelihood of the same event occurring
is changing in the future under an additional degree of
global warming, leading to a 2 °C warming relative to
pre-industrial. Of course, for the scenarios of the
future we do not have any observations. Furthermore,
the framing of the analysis differs more widely
between the different models. We thus do not attempt
to synthesise the results but present them individually
in figure 4(b). In all available models the probability
ratio increases further by a factor comparable to the
ratio of increase resulting from the degree of warming
up to today, suggesting that drought risk in this area
scales linearly with warming, at least for warming up
to 2 °C.

6. Vulnerability and exposure

Exposure is the presence of people, their livelihoods,
infrastructure, and economic and social assets in
places that could be affected by extreme events, such as
rainfall or drought, while vulnerability denotes the
propensity or predisposition for those people or assets
to be affected (Cardona et al 2012). In this section we
summarise the vulnerability and exposure factors that
have also contributed to the impacts throughout the
Western Cape, including strict water usage limits in
the City of Cape Town, and agricultural drought in the
surrounding areas.
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The Western Cape Water Supply System consists
of 14 dams and pipelines managed by the City of Cape
Town and the National Department of Water and
Sanitation. The system’s capacity is provided by six
dams, the largest of which are located outside of the
city limits and supply water to both the city of Cape
Town (64%) and surrounding farmland (32%) (Water
Services and theCape TownWater Cycle,March 2018,
https://resource.capetown.gov.za/documentcentre/
Documents/Graphics%20and%20educational%
20material/Water%20Services%20and%20Urban%
20Water%20Cycle.pdf.) The system is almost entirely
dependent on rainfall, making it highly vulnerable to
climate variability and change. Although the system
was designed to provide sufficient water storage to
mitigate droughts with a return interval of 1 in 50 years
(WaterOutlook 2018, https://greencape.co.za/assets/
;Uploads/Water-Outlook-2018-Rev-22-updated-23-
March-2019.pdf.), this paper shows that the return
time of extreme droughts has changed due to climate
change, leaving the population and economy protected
by this system more vulnerable to drought risks than
previously anticipated. The system’s reliability made it
so that few people had back-up water tanks in case the
system failed, a contrast to other large cities that have
faced similar water crisis such as Sao Paulo (Campos
and deCarvalho Stutdart 2008).

Droughts in South Africa affect both the local
and national economy, by adding pressure to the
nation’s agro-economic system, including increased

unemployment, negative impacts on upstream eco-
nomic activities and production loss over several years
(Baudoin et al 2017).While the agricultural sector only
makes up 4% of total Western Cape GDP, it is a key
formal and informal employer in the Western Cape
and provides inputs for other industry such as the agri-
processing. South Africa’s ‘Provincial Economic
Review and Outlook 2017’ listed the water crisis as
both a physical and financial risk to companies in the
Western Cape with water tariffs reducing competitive-
ness, adding risk to operations, and impacting busi-
nesses reputation for reliability and quality (e.g.
https://westerncape.gov.za/assets/departments/
treasury/Documents/Research-and-Report/2017/
2017_pero_printers_proof_21_september_2017_
f.pdf).

While Cape Town’s population continues to grow,
the City has been internationally recognised for its
water conservation demand management practices
which have stabilised water demand growth to around
2% per annum. However, this has not been sufficient
to avoid the impacts of the current drought due, in
part, to changing risks and has a disproportionate
negative impact on poorer households (Mahlanza et al
2016). In addition to increasing water efficiency, and
implementing water restrictions and tariffs to manage
demand, the City explored options for augmenting the
water supply. Planned desalination plants are focused
on providing water for strategically important infra-
structure such as hospitals and the commercial city

Figure 4. (a) provides an overview of themulti-method results for changes in return periods depicted as probability (risk) ratios with
95%uncertainty intervals; (b)provides an overview of themulti-method results for changes in return periods depicted as probability
(risk) ratios with 95%uncertainty intervals in aworldwithGMSTwarmer by 2 °C.
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centre, in order to reduce their vulnerability to future
droughts. These augmentation activities are intended
to supplement the existing water supply starting in
2019, andwere catalyzed be concern for the potentially
serious consequences if rainfall was again poor during
the 2018 rainy season.

7. Conclusion

While the event today is a very rare event, climate
change has significantly increased,more than doubled,
the likelihood of a prolonged drought to occur. All the
model results available to us suggest that this trendwill
continuewith a similar rate into the future.

The hydrological analysis revealed a dominant role
for rainfall in this drought compared to evapo-
transpiration, prompting us to focus on precipitation
as the key variable through which to understand the
impact of anthropogenic climate change on the Wes-
tern Cape drought today. This is consistent with other
modeling results suggesting that the future increase in
drought risk over South Africa is predominantly pre-
cipitation-driven.

However, a brief analysis of evapotranspiration in
reanalysis data (see SI) revealed a strong upward trend
in recent years, consistent with the regional warming
trend. This suggests that more research is needed to
better understand the role of temperature in a drought
like this.

While Cape Town has narrowly avoided the taps
running dry in this instance, this has been at the cost of
water to irrigate the farms in the Western Cape. The
increasing risk of drought, coupled with high reliance
on rain-fed dams that supply water to a growing city
and agricultural sector, provides a strong basis for
reassessing the current water supply and management
to adapt to changing risks. This may include con-
siderations for diversifying the current water supply
through desalination and groundwater extraction
along with ecosystem-based adaptation approaches
that ensure replenishment of groundwater supplies,
for example.
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