492 research outputs found

    Dynamical mean-field approach to materials with strong electronic correlations

    Full text link
    We review recent results on the properties of materials with correlated electrons obtained within the LDA+DMFT approach, a combination of a conventional band structure approach based on the local density approximation (LDA) and the dynamical mean-field theory (DMFT). The application to four outstanding problems in this field is discussed: (i) we compute the full valence band structure of the charge-transfer insulator NiO by explicitly including the p-d hybridization, (ii) we explain the origin for the simultaneously occuring metal-insulator transition and collapse of the magnetic moment in MnO and Fe2O3, (iii) we describe a novel GGA+DMFT scheme in terms of plane-wave pseudopotentials which allows us to compute the orbital order and cooperative Jahn-Teller distortion in KCuF3 and LaMnO3, and (iv) we provide a general explanation for the appearance of kinks in the effective dispersion of correlated electrons in systems with a pronounced three-peak spectral function without having to resort to the coupling of electrons to bosonic excitations. These results provide a considerable progress in the fully microscopic investigations of correlated electron materials.Comment: 24 pages, 14 figures, final version, submitted to Eur. Phys. J. for publication in the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom

    Effect of Ordering on Spinodal Decomposition of Liquid-Crystal/Polymer Mixtures

    Full text link
    Partially phase-separated liquid-crystal/polymer dispersions display highly fibrillar domain morphologies that are dramatically different from the typical structures found in isotropic mixtures. To explain this, we numerically explore the coupling between phase ordering and phase separation kinetics in model two-dimensional fluid mixtures phase separating into a nematic phase, rich in liquid crystal, coexisting with an isotropic phase, rich in polymer. We find that phase ordering can lead to fibrillar networks of the minority polymer-rich phase

    Effect of local Coulomb interactions on the electronic structure and exchange interactions in Mn12 magnetic molecules

    Get PDF
    We have studied the effect of local Coulomb interactions on the electronic structure of the molecular magnet Mn12-acetate within the LDA+U approach. The account of the on-site repulsion results in a finite energy gap and an integer value of the molecule's magnetic moment, both quantities being in a good agreement with the experimental results. The resulting magnetic moments and charge states of non-equivalent manganese ions agree very well with experiments. The calculated values of the intramolecular exchange parameters depend on the molecule's spin configuration, differing by 25-30% between the ferrimagnetic ground state and the completely ferromagnetic configurations. The values of the ground-state exchange coupling parameters are in reasonable agreement with the recent data on the magnetization jumps in megagauss magnetic fields. Simple estimates show that the obtained exchange parameters can be applied, at least qualitatively, to the description of the spin excitations in Mn12-acetate.Comment: RevTeX, LaTeX2e, 4 EPS figure

    Recent Developments in Understanding Two-dimensional Turbulence and the Nastrom-Gage Spectrum

    Get PDF
    Two-dimensional turbulence appears to be a more formidable problem than three-dimensional turbulence despite the numerical advantage of working with one less dimension. In the present paper we review recent numerical investigations of the phenomenology of two-dimensional turbulence as well as recent theoretical breakthroughs by various leading researchers. We also review efforts to reconcile the observed energy spectrum of the atmosphere (the spectrum) with the predictions of two-dimensional turbulence and quasi-geostrophic turbulence.Comment: Invited review; accepted by J. Low Temp. Phys.; Proceedings for Warwick Turbulence Symposium Workshop on Universal features in turbulence: from quantum to cosmological scales, 200

    Population dynamics in compressible flows

    Full text link
    Organisms often grow, migrate and compete in liquid environments, as well as on solid surfaces. However, relatively little is known about what happens when competing species are mixed and compressed by fluid turbulence. In these lectures we review our recent work on population dynamics and population genetics in compressible velocity fields of one and two dimensions. We discuss why compressible turbulence is relevant for population dynamics in the ocean and we consider cases both where the velocity field is turbulent and when it is static. Furthermore, we investigate populations in terms of a continuos density field and when the populations are treated via discrete particles. In the last case we focus on the competition and fixation of one species compared to anotherComment: 16 pages, talk delivered at the Geilo Winter School 201

    Parametrization of nonlinear and chaotic oscillations in driven beam-plasma diodes

    Get PDF
    Nonlinear phenomena in a driven plasma diode are studied using a fluid code and the particle-in-cell simulation code XPDPI. When a uniform electron beam is injected to a bounded diode filled with uniform ion background, the beam is destabilized by the Pierce instability and a perturbation grows to exhibit nonlinear oscillations including chaos. Two standard routes to chaos, period doubling and quasiperiodicity, are observed. Mode lockings of various winding numbers are observed in an ac driven system. A new diagnostic quantity is used to parametrize various nonlinear oscillations.open10

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    Measurement of the t-channel single top quark production cross section in pp collisions at √s =7 TeV

    Get PDF
    Peer reviewe

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance
    corecore