
University of Texas Rio Grande Valley University of Texas Rio Grande Valley 

ScholarWorks @ UTRGV ScholarWorks @ UTRGV 

School of Mathematical and Statistical 
Sciences Faculty Publications and 
Presentations 

College of Sciences 

11-2006 

Recent Developments in Understanding Two-dimensional Recent Developments in Understanding Two-dimensional 

Turbulence and the Nastrom-Gage Spectrum Turbulence and the Nastrom-Gage Spectrum 

Eleftherios Gkioulekas 
The University of Texas Rio Grande Valley, eleftherios.gkioulekas@utrgv.edu 

Ka Kit Tung 

Follow this and additional works at: https://scholarworks.utrgv.edu/mss_fac 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Gkioulekas, E., Tung, KK. Recent Developments in Understanding Two-dimensional Turbulence and the 
Nastrom–Gage Spectrum. J Low Temp Phys 145, 25–57 (2006). https://doi.org/10.1007/
s10909-006-9239-z 

This Article is brought to you for free and open access by the College of Sciences at ScholarWorks @ UTRGV. It has 
been accepted for inclusion in School of Mathematical and Statistical Sciences Faculty Publications and 
Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact 
justin.white@utrgv.edu, william.flores01@utrgv.edu. 

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/mss_fac
https://scholarworks.utrgv.edu/mss_fac
https://scholarworks.utrgv.edu/mss_fac
https://scholarworks.utrgv.edu/cos
https://scholarworks.utrgv.edu/mss_fac?utm_source=scholarworks.utrgv.edu%2Fmss_fac%2F436&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.utrgv.edu%2Fmss_fac%2F436&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu


Reprint. Published at J. Low Temp. Phys., 145, 25-57, 2006

Recent Developments in Understanding Two-dimensional Turbulence and
the Nastrom-Gage Spectrum

Eleftherios Gkioulekas∗ and Ka-Kit Tung†

Department of Applied Mathematics, University of Washington, Seattle, WA, United States

Two-dimensional turbulence appears to be a more formidable problem than three-
dimensional turbulence despite the numerical advantage of working with one less dimen-
sion. In the present paper we review recent numerical investigations of the phenomenology
of two-dimensional turbulence as well as recent theoretical breakthroughs by various lead-
ing researchers. We also review efforts to reconcile the observed energy spectrum of the
atmosphere (the spectrum) with the predictions of two-dimensional turbulence and quasi-
geostrophic turbulence.

PACS numbers: 42.68.Bz, 47.27.-i, 47.27.ek, 92.60.hk, 92.10.ak

I. INTRODUCTION

Turbulence is ubiquitous in the fluid enviroment we live in, and yet a fundamental theoretical
understanding from first principles is not yet available, although considerable progress has been
made in the case of isotropic and homogeneous three-dimensional turbulence. Large-scale flows in
thin fluid shells, such as planetary atmospheres and the ocean, tend to be quasi-two-dimensional.
Two-dimensional flows differ from three-dimensional turbulence in that there are usually two
closely related conservative quantities exchanged by nonlinear triad interactions. Furthermore, the
cascades of two-dimensional turbulence do not exhibit universal behavior with the same degree
of consistency that we have come to expect from three-dimensional turbulence. Also interest-
ing is the inverse energy cascade, unique in “2d-like” systems, where an initially noisy velocity
field continuously forced by white noise small-scale forcing will nonetheless evolve into coherent
vortical structures. The striking resemblence between the pattern formation of two-dimensional
turbulence and similar patterns in the atmospheres of gas-giant planets, like Jupiter, tickles the
imagination and raises interesting but hard questions. [126]

When Kraichnan [65], Leith [70] and Batchelor [3] first pioneered the study of two-dimensional
turbulence, it was thought that it would be easier to handle theoretically and simpler to simulate
numerically than three-dimensional turbulence. The fact that no convincing simulation of the dual
cascades predicted by KLB, with an upscale energy cascade and a downscale enstrophy cascade,
has been achieved during the ensuing three decades is a hint that the problem of two-dimensional
turbulence is richer than was thought, perhaps even richer than the three-dimensional isotropic ho-
mogeneous turbulence. In addition, because geophysical fluids behave more like two-dimensional
fluids than three-dimensional isotropic homogeneous fluids, it is not possible to simply ignore
the theoretical and numerical problems of two-dimensional turbulence on the grounds that it is a
fictitious fluid.

∗Electronic address: lf@amath.washington.edu
†Electronic address: tung@amath.washington.edu
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In the present paper, we shall review some of the recent breakthroughs in understanding two-
dimensional turbulence. We shall also review the problem of the Nastrom-Gage energy spectrum
of the atmosphere, and recent theories that have been proposed to explain it. Needless to say,
this review is biased to reflect the viewpoint and interests of the authors. Less biased reviews of
two-dimensional turbulence [68, 71, 112] and quasi-geostrophic turbulence [97, 105] are available
in the literature. Good reviews on the Nastrom-Gage spectrum can also be found in the papers by
Lindborg [73, 75].

This paper is organized as follows. Sections 2 and 3 of the paper deal with two-dimensional
turbulence. Section 4 discusses the problem of the Nastrom-Gage energy spectrum. Finally, sec-
tion 5 reviews the method of spectral reduction, because we believe that it has the potential to lead
to further breakthroughs in this field.

II. DYNAMICS OF TWO-DIMENSIONAL TURBULENCE

Let uα(r, t) be the Eulerian velocity field. The governing equations of two-dimensional turbu-
lence are:

∂uα
∂ t

+uβ ∂β uα = −∂α p+Duα + fα , (1)

∂αuα = 0, (2)

where fα is the forcing term, and D is the dissipation operator given by

D ≡ (−1)κ+1νκ∇2κ +(−1)m+1β∇−2m. (3)

Here the integers κ and m describe the order of the dissipation mechanisms, and the numerical
coefficients νκ and β are the corresponding viscosities. D is the overall dissipation operator. The
term fα represents stochastic forcing that injects energy into the system at a range of length scales
in the neighborhood of the integral length scale �0. The term β∇−2muα describes a dissipation
mechanism that operates on large-scale motions. The operator ∇−2m represents applying the in-
verse Laplacian ∇−2 repeatedly m times. In Fourier space it is diagonalized, and its definition may
therefore be extended to fractional values for m. The same holds for k.

The case κ = 1 corresponds to standard molecular viscosity. The interaction of the atmosphere
with the viscous Ekman boundary layer introduces an energy sink to the interior fluid, known as
Ekman damping, that corresponds to the case m = 0 [97]. The same case also seems to describe an
energy dissipation mechanism in soap film experiments [103]. In this sense, one may claim that
the case m = 0 is “physical” and the case m > 0 is “artificial”, or numerical.

A. Reformulations of Governing Equations

To eliminate pressure we multiply both sides of the Navier-Stokes equation with the operator
Pαβ ≡ δαβ −∂α∂β ∇−2 and we employ Pαβ uβ = uβ and Pαβ ∂β = 0 to obtain

∂uα
∂ t

+Pαβ ∂γ(uβ uγ) = Duα +Pαβ fβ . (4)
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The operator Pαβ can be expressed in terms of a kernel Pαβ (x) as

Pαβ vβ (x) =
∫

dyPαβ (x−y)vβ (y) (5)

=
∫

dyPαβ (y)vβ (x−y). (6)

For two-dimensional turbulence Pαβ (x) is given by

Pαβ (x) = δαβ δ (x)− 1
2π

[δαβ

r2 −2
xαxβ

r4

]
. (7)

The scalar vorticity ζ is given by ζ = εαβ ∂αuβ with εαβ the Levi-Civita tensor in two dimen-
sions. From the incompressibility condition ∂αuα = 0 it follows that there is a function ψ , called
the streamfunction, such that uα = εαβ ∂β ψ . Using the identity εαβ εβγ = δαγ one then shows that
ζ = εαβ εβγ∂α∂γψ = ∇2ψ from which we get ψ = ∇−2ζ and uα = εαβ ∂β ∇−2ζ .

The vorticity equation is obtained by differentiating ζ with respect to time and employing the
Navier-Stokes equations:

∂ζ
∂ t

+ J(ψ,ζ ) = Dζ +g, (8)

where J(ψ,ζ ) is the Jacobian defined as

J(A,B) = εαβ (∂β A)(∂αB), (9)

and g = εαβ ∂α fβ is the forcing term. The nonlinear term J ≡ J(ψ,ζ ) has been obtained by
employing the following argument

J = εαβ ∂αPβγ∂δ (uγuδ ) = εαβ ∂α [uγ∂γuβ ] (10)

= uγ∂γ ζ +(εαβ ∂αuγ)(∂γuβ ) (11)

= uγ∂γ ζ = J(ψ,ζ ). (12)

The term (εαβ ∂αuγ)(∂γuβ ) represents vortex stretching, but in two dimensions it can be shown
that

(εαβ ∂αuγ)(∂γuβ ) = 0. (13)

by direct substitution of the vector components.

B. Conservation Laws

The critical feature that distinguishes two-dimensional turbulence from three-dimensional tur-
bulence is that there are two relevant conservation laws rather than just one.

It can be shown that if two arbitrary fields a(x, t) and b(x, t) satisfy a homogeneous (Dirichlet
or Neumann) boundary condition, then 〈〈J(a,b)〉〉= 0, where we use the notation

〈〈 f 〉〉 ≡
∫∫

〈 f (x,y)〉 dxdy, (14)
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for the combined spatial and ensemble average. It follows from the product rule of differentiation
that

〈〈J(ab,c)〉〉= 〈〈aJ(b,c)〉〉+ 〈〈bJ(a,c)〉〉= 0, (15)

from which we obtain the identity

〈〈aJ(b,c)〉〉= 〈〈bJ(c,a)〉〉= 〈〈cJ(a,b)〉〉, (16)

which was also shown previously by Tran and Shepherd [116]. This identity can be used to derive
the conservation laws.

The equation ∂ζ/∂ t + J(ψ,ζ ) = 0 conserves the enstrophy G = (1/2)〈〈ζ 2〉〉 because

〈〈Ġ〉〉 = 〈〈ζ ζ̇ 〉〉 = 〈〈−ζJ(ψ,ζ )〉〉= 〈〈−ψJ(ζ ,ζ )〉〉= 0. (17)

To derive the conservation of energy we first note that the Laplacian operator ∇2 and the inverse
Laplacian operator ∇−2 are both self-adjoint in the sense that they satisfy 〈〈 f (∇2g)〉〉= 〈〈g(∇2 f )〉〉
and 〈〈 f (∇−2g)〉〉 = 〈〈g(∇−2 f )〉〉for any fields f (x,y) and g(x,y). The self-adjoint property of the
inverse Laplacian operator ∇−2 implies that the energy E ≡ (1/2)〈〈−ψζ 〉〉 is also conserved via
the following argument:

〈〈Ė〉〉 = (1/2)〈〈−ψζ̇ −ζ ψ̇〉〉 (18)

= (1/2)[〈〈ψJ(ψ,ζ )〉〉+ 〈〈ζ ∇−2J(ψ,ζ )〉〉] (19)

= (1/2)[〈〈ψJ(ψ,ζ )〉〉+ 〈〈∇−2ζ )J(ψ,ζ )〉〉] (20)

= 〈〈ψJ(ψ,ζ )〉〉 = 〈〈ζJ(ψ,ψ)〉〉 = 0. (21)

The energy spectrum E(k) and the enstrophy spectrum G(k) are defined as

E(k) =
1
2

d
dk

〈〈−ψ<kζ <k〉〉, (22)

G(k) =
1
2

d
dk

〈〈(ζ <k)2〉〉, (23)

with ψ<k and ζ <k the streamfunction and vorticity fields with all the Fourier wavenumbers greater
than k in magnitude filtered out. The spectral equations are obtained by differentiating E(k) and
G(k) with respect to t, and employing the Fourier transform of the governing equation (8):

∂E(k)
∂ t

+
∂ΠE(k)

∂k
= −DE(k)+FE(k) (24)

∂G(k)
∂ t

+
∂ΠG(k)

∂k
= −DG(k)+FG(k). (25)

It is understood that ensemble averages have been taken in the above quantities. Here ΠE(k) is
the energy flux transfered from (0,k) to (k,+∞) per unit time by the nonlinear term in (8), DE(k)
the energy dissipation, and FE(k) the energy forcing spectrum, and likewise for the enstrophy (G)
equation. The conservation laws imply for the viscous case that ΠE(0) = limk→∞ ΠE(k) = 0 and
ΠG(0) = limk→∞ ΠG(k) = 0. For the inviscid case, this condition can be violated, in principle, by
anomalous dissipation for solutions that have singularities. The energy and enstrophy spectrum
are related as G(k) = k2E(k), and likewise it is easy to show that DG(k) = k2DE(k) and FG(k) =
k2FE(k). Combining these equations with (24) and (25) we obtain the so-called Leith constraint
[70]:

∂ΠG(k)
∂k

= k2 ∂ΠE(k)
∂k

. (26)
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C. Direction of Fluxes

It was recognized by Fjørtøft [46] and Charney [18] that the direction of net energy transfer in
2D and QG turbulence may be different from that for 3D isotropic and homogeneous turbulence
and that the cause for this different behavior should be attributed to the former’s twin conservation
of energy and enstrophy. It is often claimed that Fjørtøft has shown that if a unit of energy is
moved downscale, many more units of it have to be moved upscale in order to preserve the twin
energy and enstrophy conservation. However, Fjørtøft’s analysis of triadic transfers was flawed
[54, 86, 120]. His proof made use of the simultaneous conservation of energy and enstrophy in 2D
and QG turbulence, and the fact that enstrophy spectrum G(k) is related to the energy spectrum
E(k) by G(k) = k2E(k).

In his paper, Fjørtøft [46] gives two distinct proofs. The first proof does show that the only
admissible triad interactions are those that spread energy from the middle wavenumber to the
outer wavenumbers (and vice versa, the ones that bring in energy to the central wavenumber from
the outer wavenumbers). These are the triad interactions defined by Waleffe [122] as class “R”.
An alternative set of triad interactions are the ones where energy is transfered from the small-
est wavenumber to the two largest ones; these are the class “F” triad interactions, and they are
dominant in three-dimensional turbulence. Fjørtøft’s proof can be employed to rule these out in
two-dimensional turbulence. However, as was pointed out by Merilees and Warn [86] there exist
also class “R” triad interactions that transfer more energy downscale than upscale. Thus, eliminat-
ing the class “F” interactions is not sufficient to constrain the direction of the energy flux or the
enstrophy flux.

To see this more clearly, let us carefully reconsider Fjørtøft’s [46] argument, using the nota-
tion of Kraichnan [65]. Let T (k, p,q) be the energy transfer to the wavenumber shell k from the
wavenumber shells p and q. Detailed conservation of energy and enstrophy implies that

T (k, p,q)+T (p,q,k)+T (q,k, p) = 0 (27)

k2T (k, p,q)+ p2T (p,q,k)+q2T (q,k, p) = 0. (28)

Solving for T (p,q,k) and T (q,k, p) in terms of T (k, p,q) we find:

T (p,q,k) =
k2 −q2

q2 − p2 T (k, p,q) and T (q,k, p) =
p2 − k2

q2 − p2 T (k, p,q). (29)

Let us assume that p < k < q. We see that T (k, p,q) < 0 implies that T (p,q,k)> 0 and T (q,k, p) >
0. Thus, class “F” triad interactions can be ruled out. The transfer difference towards the “outer”
wavenumbers p and q from the inner wavenumber k is given by:

∆T (k, p,q) ≡ T (p,q,k)−T (q,k, p) =
2k2 − p2 −q2

q2 − p2 T (k, p,q). (30)

For the traditional example p = k/2 and q = 2k, we have ∆T (k, p,q) = −(9/15)T (k, p,q) which
is in the upscale direction when T (k, p,q) < 0 (i.e. when energy goes to the outer wavenumbers).
However, for q2 = λ (2k2− p2) we have

∆T (k, p,q) =
(2k2 − p2)(1−λ )

q2 − p2 T (k, p,q). (31)
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We see that the transfer difference is upscale only when λ > 1 and is in fact downscale when
λ < 1. The constraint q > k implies λ > k2/(2k2 − p2), however it is easy to show that p < k
implies 1 > k2/(2k2 − p2). So there is a critical region

k2

2k2 − p2 < λ < 1, (32)

for the parameter λ where the outgoing triad interactions transfer more energy downscale than
upscale for all p < k. Despite this problem, Fjørtøft’s proof has been popularized in textbooks
[105] and review articles [112] as a rigorous proof that constrains the direction of the fluxes in
two-dimensional turbulence, thereby becoming a bit of a misunderstood “folklore” argument.

The second result of Fjørtøft [46] is an upper bound on the total energy accumulated on
wavenumbers larger than some given k. This result however applies only to initial value problems
without forcing, where energy has to be bounded, unsurprisingly. This inequality was later taken
by Charney [18] as a proof that energy cannot go downscale, since the energy E>k(t) accumulated
at wavenumbers larger than k is bounded by

E>k(t) =
∫ ∞

k
E(q) dq ≤ 1

k2

∫ ∞

k
q2E(q) dq ≤ 1

k2 G(t)≤ 1
k2 G(0), (33)

where G(t) is the total enstrophy at time t. Thus, the energy spectrum E(k, t) is bounded by
E(k, t) ≤ ck−3 for some constant c. Tung and Welch [120] pointed out that this behavior of the
energy spectrum is merely a consequence of the requirement for convergence of the Fourier repre-
sentation of the enstrophy spectrum G(k), which implies that G(k) must decay faster than k−1 as
k → ∞. Therefore the energy spectrum E(k) must decay faster than k−3 as k → ∞. It says nothing
about the direction of energy cascade, thus it does not help Fjørtøft’s “proof” in the first half of
the paper.

Other proofs [36, 101, 102, 105, 106] have been reviewed recently by Gkioulekas and Tung
[54]. In that paper [54] we have also given a general unified proof both for the forced-dissipatice
case and for the decaying case: Assume that the forcing spectrum FE(k) is confined to a narrow
interval of wavenumbers [k1,k2]. Then, we have

FE(k) = 0 and FG(k) = 0,∀k ∈ (0,k1)∪ (k2,+∞), (34)

and it can be shown [54] for the forced dissipative case, without making any ad hoc assumptions,
that under stationarity, the fluxes ΠE(k) and ΠG(k) will satisfy the inequalities

∫ k

0
qΠE(q) dq < 0, ∀k > k2 (35)

∫ +∞

k
q−3ΠG(q) > 0, ∀k < k1. (36)

The constraint (35) holds trivially for k < k1, since ΠE(k) < 0 for all k < k1. For k > k2, the
integration range also includes the energy injection interval [k1,k2] and both the upscale cascade
range and the downscale cascade range. The inequality (35) implies that the negative flux in the
(0,k1) interval is more intense than the positive flux in the (k2,+∞) because the weighted average
of ΠE(k) gives more weight to the large wavenumbers. Thus, (35) implies that energy fluxes
upscale in the net. Similarly, (36) implies that enstrophy fluxes downscale in the net. These results
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can be extended [54] to the decaying case provided that there exists a small wavenumber ε1 > 0
and a large wavenumber ε2 > 0 such that

DA(q)+
∂A(k)

∂ t
≥ 0, ∀k ∈ (0,ε1) (37)

DA(q)+
∂A(k)

∂ t
≥ 0, ∀k ∈ (ε2,+∞). (38)

Note that (37) implies (35) and (38) implies (36).
It should be noted that, unlike previous proofs, in both the forced-dissipative and the decaying

case, the inequalities (35) and (36) have the same mathematical form. Our argument then is a
unified proof that covers all cases, and specialized results can be deduced from our inequalities
for special cases. Note that none of these results forbids energy from being transferred downscale
even when it is shown that the net flux should be directed upscale; they merely say that in those
cases the energy going upscale in the upscale range should be larger than that going downscale in
the downscale range.

III. PHENOMENOLOGY OF 2D TURBULENCE

Kraichnan [65], Leith [70], and Batchelor [3] (KLB) proposed that in two-dimensional tur-
bulence there is an upscale energy cascade and a downscale enstrophy cascade, when stochastic
forcing injects energy and enstrophy in a narrow band of intermediate length scales. This scenario
was inspired by Kolmogorov’s idea [2, 61, 62] of an inertial range for three-dimensional turbu-
lence within which energy cascades from large scales by hydrodynamic instability to small scales.
Assuming an infinite domain where all the energy flows upscale and all of the enstrophy flows
downscale, KLB invoke a dimensional analysis argument, similar to Kolmogorov’s, to show that
the energy spectrum in the upscale energy range is

E(k) = Cirε2/3k−5/3, for k�0 � 1, (39)

and in the downscale enstrophy range is

E(k) = Cuvη2/3k−3, for k�0 � 1. (40)

Anticipating the objection that the dimensional analysis arguments cannot be applied to the en-
strophy cascade, because of nonlocality, in a subsequent paper [67] Kraichnan proposed that the
enstrophy cascade energy spectrum is given by

E(k) = Cuvη2/3k−3[ln(k�0)]−1/3, (41)

and showed, using a one-loop closure model [66], that this logarithmic correction is consistent
with constant enstrophy flux. The same result can be obtained with other 1-loop models [60], and
has been refined further by Bowman [13].

In its traditional form, the KLB scenario incorporates two unrealistic assumptions. First, it
requires an unbounded domain to allow the upscale energy flux to escape to larger and larger
length scales without the need for infrared dissipation. A number of recent theoretical results
[113–115] challenge the realizability of cascades as envisaged by Kraichnan for the standard case
of Navier-Stokes without an infrared sink in a bounded domain. In the more realistic case of a
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finite domain, a dissipative sink is needed both at large scales and at small scales, in order for
cascades to form. Second, in the KLB scenario the energy dissipation sink at the small scales
is taken to approach zero so that the dissipation scale occurs at infinite wavenumber, which is
unrealistic in geophysical formulations [117, 119] and in numerical simulations. The problem we
are considering is finite domain with finite dissipation both at large scales and small scales, which
is more realistic in geophysical applications.

A. Numerical Results

In recent years, it has been possible to reproduce either the direct enstrophy cascade [59, 76, 96]
or the inverse energy cascade [9, 47, 57, 94, 95, 107], but not both simultaneously, in numerical
simulations. Even these have some interesting complications, which are briefly discussed bellow.

For the case of the downscale enstrophy cascade, it has been found that the presence of coherent
structures at large scales can prevent its development. Borue [11] showed that using hypodiffusion
(m = 8 and k = 1,8) disrupts the coherent structures and with increasing Reynolds number the
scaling of the enstrophy range approaches asymptotically Kraichnan scaling. As pointed out by
Tran and Shepherd [115], all the successful simulations of the k−3 spectral range are done so far
with the hypodiffusion device. As a matter of fact, Bernard [4] has given an elementary proof
that under Ekman damping it is not possible for the energy spectrum of the downscale cascade to
scale precisely as k−3 with or without the logarithmic correction. A steeper energy spectrum is
predicted instead. Nam et al. [90] have derived a law governing the steepening of the enstrophy
cascade by Ekman damping, however it cannot be used directly to predict the slope of the energy
spectrum from the viscosity parameters without additional experimental input. On the other hand,
there is sufficient recent evidence from numerical simulations to show that under hypodiffusion,
an enstrophy cascade, consistent with the KLB theory, can be obtained if the numerical resolution
is sufficiently large [60, 76, 96]. This was not the case even a few years earlier, when various
spectral slopes steeper than −3 were found in numerical simulations prevailing at the time.

A similar problem arises for the case of the inverse energy cascade. Danilov and Gurarie
[30] have conducted numerical simulations using (m,κ) = (0,2), and showed that the optimal β
yielding an energy spectrum closest to the KLB prediction of k−5/3 scaling does not correspond to
constant energy flux. Decreasing β improves the energy flux but the slope of the energy spectrum
steepens. This behavior is somewhat minimized in simulations using (m,κ) = (0,8), but the
reverse relation between optimizing the flux and optimizing the spectrum persists. Sukoriansky
et al [111] noted that using higher order large-scale hypo-dissipation (m > 0) may produce a
constant energy flux, but distorts the spectrum. It has therefore been suggested that the locality of
the inverse energy cascade should be called into question [28]. Both Danilov and Gurarie [29], and
earlier Borue [12], observed that this steepening is caused by coherent structures. These structures
cover a relatively small portion of the domain, but they account for most of the energy.

The most convincing evidence that we have in support of the existence of the inverse energy
cascade is the numerical simulation by Boffetta et al [9]. They used 20482 resolution and Ekman
damping (m = 0), and obtained not only the k−5/3 energy spectrum, but also the 3/2-law, which
is the mathematical equivalent of constant energy flux in real space. Ironically, the energy flux in
Fourier space is still not constant. So far as we know, an inverse energy cascade with k−5/3 energy
spectrum and constant energy flux in Fourier space hasn’t been produced by any of the numerical
simulations reported in the literature.

Boffetta et al [9] are aware of the steepening of the energy spectrum in the numerical simulation
of Borue [12] where hypodiffusion is used instead of Ekman damping, and explain it in terms of
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the “bottleneck effect”. This effect is essentially a distortion of the solution corresponding to the
inverse energy cascade by the dissipation operator acting at large scales. It has been observed in the
direct energy cascade of three-dimensional turbulence [40] and earlier in acoustic turbulence [45].
While we do not question this possibility, another possible culprit is the violation of homogeneity
by the existence of periodic boundary conditions at large scales. The locality of the inverse energy
cascade relies on the elimination of the sweeping interactions of the large-scale shear flow; this
violation of homogeneity can cause the sweeping interactions to have a significant nonlocal effect
on the energy spectrum of the inverse energy cascade [50], which may be the theoretical origin of
the well-known condensate. Ironically, it has been shown that in a downscale enstrophy cascade
dominated by sweeping, the energy spectrum is still k−3 but without the logarithmic correction
[69, 93].

The conclusion drawn from the numerical work so far is that while both cascades can mani-
fest themselves under favorable conditions, neither cascade is completely robust. This should be
contrasted with the situation in three-dimensional turbulence where the energy cascade is easily
reproduced in numerical simulations, both forced and decaying. It is ironic that it has proven more
difficult to produce the cascades of two-dimensional turbulence in numerical simulations in light
of the advantage of working with only two dimensions.

B. Theoretical Results

Because numerical simulations did not reproduce the k−3 energy spectrum of the down-
scale range consistently, alternative theories have been proposed that predict steeper scaling
[87, 99, 104]. Kraichnan [65] himself noted that the non-locality of the direct enstrophy cas-
cade makes the application of dimensional analysis inconsistent, unless a logarithmic correction
is introduced, as explained earlier. If higher order closures yield additional higher powers of
logarithmic corrections, they could add up to a power law renormalization leading to a steeper
spectrum.

Eyink has shown recently [38] that such a renormalization does not take place when a down-
scale enstrophy cascade manifests with constant enstrophy flux, although logarithmic corrections
are not excluded. This result is based on the mathematical theory of DiPerna and Lions [32], and
it is a refinement of an earlier argument [35, 36] that only ruled out energy spectra steeper than
k−11/3. The main result of Eyink [38] is that in the inviscid limit ν → 0 there is no anomalous
enstrophy sink if the total enstrophy remains finite. It follows that the total enstrophy must diverge
when ν → 0, otherwise a downscale enstrophy cascade is not possible. This rules out any energy
spectrum that is steeper than k−3, although the scaling k−3[ln(k�0)]−p with 0 ≤ p < 1 , is allowed
[34].

The absence of intermittency corrections in the downscale enstrophy cascade can be under-
stood conceptually also by comparing against the case of the downscale energy cascade in three-
dimensional turbulence. It is well known that in three-dimensional turbulence intermittency cor-
rections arise from logarithmic contributions of ladder-type Feynman diagrams to the response
functions in the fusion limit, which bring out the same scaling exponent as the usual structure
functions [80–84]. These logarithmic contributions have a numerical coefficient ∆ = 2−ζ2. For
the case of the enstrophy cascade, ζ2 = 2 implies that the coefficient ∆ is zero, so the mechanism
which causes intermittency corrections in three-dimensional turbulence, is lost in two-dimensional
turbulence.

Falkovich and Lebedev [42, 43] used a Lagrangian approach [21, 41] to confirm Kraichnan
scaling with the logarithmic correction. They also predict that the vorticity structure functions
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have regular (i.e. the scaling exponents form a straight line) logarithmic scaling given by

〈[ζ (r1)−ζ (r2)]n〉 ∼ [η ln(�0/r12)]2n/3. (42)

Eyink [37] noted that this theory does not follow from first principles and that it rests on an
unproven regularity for the velocity field. However, should this regularity condition be proven,
it would then follow that the Kraichnan scaling scenario is the only one that is statistically stable
[44].

Although Eyink’s most recent result [38] shows that intermittency corrections are excluded
in the enstrophy cascade, the argument still relies on the successful formation of an enstrophy
cascade under given configurations of dissipation at large scales and small scales. An additional
argument is then needed to show that the enstrophy cascade forms successfully and is in some
sense local and universal. Together with this argument, the results of Eyink [38] combined with
the theory by Falkovich and Lebedev [42, 43] give a satisfying theory for the downscale enstrophy
cascade.

Unlike the enstrophy range, Kraichnan’s dimensional analysis argument is at least self-
consistent for the inverse energy cascade. A recent numerical simulation [9] has revealed that
there are no intermittency corrections to the inverse energy cascade. This has also been corrob-
orated by experiment [95]. Yakhot [125] has formulated an interesting theoretical explanation,
using a mathematical technique developed by Polyakov [100] for Burger’s turbulence. His argu-
ment is based on the assumption that the pressure gradients are local, in the sense of his theoretical
framework. The physical meaning of this assumption, in our opinion, is that there does exist an
inverse energy cascade, where local interactions are dominant, without any trouble from the bottle-
neck effect, sweeping interactions, or (theoretically possible but unlikely) instability with respect
to the forcing at small scales.

A recent paper by L’vov et al [79] provides further insight into the nature of the inverse energy
cascade. It is shown that for hydrodynamic turbulence with dimension d = 4/3, a k−5/3 energy
spectrum at large scales is an enstrophy absolute equilibrium spectrum where the velocity field
is completely Gaussian and the energy does not flow in either direction. When the dimension is
increased to the physical value d = 2, the velocity field remains mostly Gaussian but an upscale
energy flux is now allowed. As a result, intermittency corrections are sufficiently negligible that
they’re not observable.

A comprehensive theory of the two-dimensional inverse energy cascade still remains an unfin-
ished task.

IV. THE NASTROM-GAGE SPECTRUM

According to Kraichnan [65], the study of two-dimensional turbulence was motivated by the
hope that it would prove a useful model for atmospheric turbulence. This idea was later encouraged
by Charney [18] who claimed that quasi-geostrophic turbulence is isomorphic to two-dimensional
turbulence. The question that was then posed was whether the energy spectrum of the atmosphere
at length scales that are orders of magnitude larger than the thickness of the atmosphere can be
explained in terms of the theory of two-dimensional turbulence. This question continues to be
debated today.

Early observations by Wiin-Nielsen [124] suggested that the energy spectrum of the atmosphere
follows a k−3 power law behavior consistent with an enstrophy cascade. Because of the sparseness
of observational stations, only results for the planetary scales (∼ 10000km) and synoptic scales
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FIG. 1: The Nastrom-Gage spectrum of atmospheric turbulence. For the purpose of showing the individual
spectrum, the spectrum for meridional wind is shifted one decade to the right, while that for potential
temperature is shifted two decades to the right.

(∼ 1000km) were shown. Wiin-Nielsen’s data at the time appeared to fit this picture, with approx-
imately a −3 power law for wavenumbers between 8 and 16, and a (less defined) −0.4 power law
for wavenumbers smaller than 8. The break in the slopes was identified [20, 124] as the location
of energy injection by baroclinic instability, which was assumed to occur in a narrow wavenumber
band around 8.

An analysis by Nastrom and Gage [91, 92] of high resolution wind and temperature measure-
ments, collected using commercial airplane flights in the upper troposphere and lower stratosphere
in the late 70’s, showed that there is a robust k−3 spectrum extending from approximately 3000 km
to 800 km in wavelength (the “synoptic scales”) and a robust k−5/3 spectrum extending from 600
km down to a few kilometers (the “mesoscales”). The transition from one slope to the other oc-
curs gradually between 600km and 800km. Recent measurements [25, 26, 85] have confirmed the
k−5/3 part of the atmospheric energy spectrum. This remarkably robust spectrum is widely known
as the Nastrom-Gage spectrum (see Figure 1). General Circulation models have been shown to be
capable of reproducing the Nastrom-Gage spectrum in agreement with observations [63, 64, 108].
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A. Prior Explanations of the Nastrom-Gage Spectrum

Naively one could interpret the −3 slope as two-dimensional (2D) turbulence, for which
Kraichnan predicted the −3 slope for downscale enstrophy cascade. One could also interpret
the −5/3 sloped portion of the spectrum for scales less than 600 km as three-dimensional (3D)
turbulence, for which Kolmogorov predicted a −5/3 spectral slope for homogeneous isotropic 3D
turbulence with downscale energy cascade, and attribute the transition from the −3 slope to the
−5/3 slope as due to the motion being predominantly 2D for the large scales in the thin shell of
the troposphere and the shorter scales as being 3D. However, results of classical 3D turbulence
cannot be applied here to motions whose horizontal scales range up to 600km in wavelength,
while its vertical scale is about 10km (which is the scale of the depth of the troposphere). The −3
sloped portion could conceivably be explained by Quasi-Geostrophic (QG) turbulence of Charney
[18], which bears much resemblance to 2D turbulence. However caution should be exercised over
most of the scales involved (the synoptic scales), which are in the forcing range where energy and
enstrophy injection occurs and therefore are not in an inertial range [120, 123].

Some of the earliest theories for the −5/3 part of the spectrum involved internal gravity waves
[31, 121]. As pointed out by Gage and Nastrom [48], observational information on the vertical
velocity spectrum revealed that there is a basic inconsistency between the observed spectra and
theories of internal waves as the cause of the mesoscale spectrum. There is “simply too much
energy” in the horizontal spectrum compared to the vertical spectrum to be consistent with the
idea that both are due to a common spectrum of internal waves.

A proposed theory still being considered is due to Lilly [72], who suggested that thunderstorms
at the short-wave end (at km scales) of the spectrum have enough energy to generate stratified
turbulence which then collapses into 2D turbulence. This 2D turbulence cascades upscale to form
the −5/3 portion of the 2D spectrum due to the negative energy flux, in the same way as pos-
itive energy flux in Kolmorov’s theory for 3D turbulence generate its −5/3 spectrum (since the
dimensional argument for the −5/3 spectral slope is independent of the sign of the energy flux).
According to this theory, in addition to the small-scale source there is also a large-scale source in-
jecting potential enstrophy and thereby giving rise to the k−3 spectrum at large scales. A variation
on this theme is the theory of Falkovich [39] where the k−3 portion is explained as a condensate
and not as an enstrophy cascade.

How much of the thunderstorm’s energy, which consists of gravity waves, which radiate away,
and in the form of 3D turbulence, which naturally tends to cascade into still smaller scales, can be
converted into 2D turbulence and cascaded up three decades of scales is questionable. Extensive
numerical calculations of stratified turbulence show that only 2% of the energy is converted into
2D turbulence [110]. That may or may not be sufficient to generate the observed spectrum without
further study. What is more difficult to explain with this theory of thunderstorm source of energy
is the fact that the spectrum, in particular the transition wavenumber between the shallow portion
and the steeper portion of the spectrum, appears to be approximately the same whether it is in
winter or summer, and whether the airplane flew over storms or not.

At first Lilly’s theory of small-scale and large-scale source was favored because Lindborg [73],
using third order structure functions, appeared to have deduced from observed data that the energy
flux is upscale. Later, however, Cho and Linborg [22, 23] corrected a sign error which then led
them to conclude that their analyses of data at “mesoscales in both the upper troposphere and lower
stratosphere provide no support for an inverse energy cascade 2D turbulence.” There is now even
analysis [24] of aircraft data which gives the magnitude of the finite dissipation rate at the small
scales (or equivalently, the downscale energy flux).
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FIG. 2: The energy spectrum predicted by the model of Tung and Orlando [118]. Note the -3 sloped
spectrum over the subsynoptic scales transitioning at around 700km to a -5/3 sloped spectrum over the
mesoscales. These features compare very favorably to the observed spectrum. For larger scales, the synoptic
and planetary scales, there were not enough long distanced flight segments in the Nastrom-Gage data, hence
the drop off in power. Nevertheless, station data can be used to supplement the aircraft data for the larger
scales. Our model results compare favorably at those scales to these data as well, including the steeper than
-3 slope over the synoptic scales, which are located in the forcing region [123].

B. The Tung-Orlando Double Cascade Theory

The “remarkable degree of universality” (Gage and Nastrom 1986) in spectral amplitude and
in spectral shape over the entire range of wavelengths encompassing both the −3 and the −5/3
parts of the spectrum is “hard to explain” if it were due to forcing on two ends of the spectrum
by two unrelated physical processes. The spectrum is perhaps best explained by a source only at
the large scales being responsible for both parts of the spectrum, as first proposed by Tung and
Orlando [118]. There is a natural source for this energy injection and it is of sufficient amplitude:
baroclinic instability caused by the north-south temperature of the lower atmosphere (ultimately
due to the sun heating the tropics more than the high latitudes, making the atmosphere potentially
unstable). Such injection of energy and potential enstrophy occurs at the synoptic scales (10000km
to 2000km).

If ηuv is the downscale enstrophy flux and εuv is the downscale energy flux, it was suggested
by Tung and Orlando [118] that they would coexist on the downscale side of injection in the same
inertial range and their separate contributions to the energy spectrum would give the latter a com-
pound spectral shape, with a −3 slope transitioning to a shallower −5/3 slope as the wavenumber
increases. So, in a sense, the Tung-Orlando theory is that the entire Nastrom-Gage spectrum can
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be conceptualized as a double cascade of both energy and potential enstrophy.
Using a dimensional argument, the transition from −3 slope to −5/3 slope is expected to occur

at the transition wavenumber kt with order of magnitude estimated by kt ≈
√

ηuv/εuv. Recent
measurements and data analysis [22] estimate ηuv ≈ 2× 10−15s−3 and εuv ≈ 6× 10−11km2s−3.
From these estimates we find the mean value of the transition scale kt =

√
ηuv/εuv ≈ 0.57×

10−2km−1 and λt = 2π/kt ≈ 1×103km which has the correct order of magnitude.
Tung and Orlando [118] have demonstrated numerically that a two-layer quasi-geostrophic

channel model with thermal forcing, Ekman damping, and hyperdiffusion can reproduce this com-
pound spectrum (see Figure 2). The resolution of these simulations goes down to 100km in wave-
length. The diagnostic shown in figure 7 of Tung and Orlando [118], shows both the constant
downscale energy and enstrophy fluxes coexisting in the same inertial range. Furthermore, Tung
and Orlando [118] confirmed the dimensional estimate kt ≈

√
ηuv/εuv for the transition wavenum-

ber kt .
The Tung-Orlando theory is contrary to the widely accepted misconception in the atmospheric

science community that the argument by Fjortoft [46] forbids a downscale energy flux in two-
dimensional turbulence altogether, and through the isomorphism theorem of Charney [18] also in
quasi-geostrophic turbulence. Various aspects of this misconception have been clarified in recent
papers [54, 86, 120] and in the present paper.

Although the nature of the nonlinear interactions which give rise to the downscale energy flux
changes from quasi-geostrophic to stratified three-dimensional in the mesoscales, as far as the
energy spectrum E(k) is concerned it is the existence of a downscale energy flux from the largest
scales (10000km) to the smallest scales (1km) which gives rise to the k−5/3 slope, regardless of
the character of the motion. The recent interest [74, 75] in understanding the k−5/3 slope in terms
of three-dimensional stratified turbulence is well motivated, since it is necessary to account for
length scales less than 100km in wavelength where the quasi-geostrophic assumption fails. It is
the view of the authors that it is equally important to understand why the quasi-geostrophic model
is capable of supporting a downscale energy cascade with k−5/3 scaling, because one also has to
account for the existence of k−5/3 scaling in the vicinity of the transition range (800km to 600km)
where the quasi-geostrophic assumption is presumably valid. Estimates for the breakdown of the
validity of the QG constraint range from 500km to 100km.

C. Double Cascades in Two-Dimensional Turbulence

In recent papers [51, 52], we have suggested that the double cascade phenomenon takes place
in pure 2D turbulence too, where it mighf be possible, under nonlinear dissipation, to have a
transition from k−3 scaling to k−5/3 scaling with increasing k. As has been pointed out by previ-
ous authors [12, 36], as long as the dissipation terms at large scales and small scales have finite
viscosity coefficients and the inertial ranges exist, the downscale enstrophy flux will be accom-
panied by a small downscale energy flux, and the upscale energy flux will be accompanied by a
small upscale enstrophy flux. Dimensional analysis arguments are premised on the assumption
that these additional fluxes can be ignored, consequently the energy spectrum predictions obtained
by such arguments are valid only to leading order. We have argued [53] that although sublead-
ing effects can be ignored with impunity for strictly two-dimensional turbulence, for models of
quasi-geostrophic turbulence, such as the two-layer model, the subleading contributions can be
important in the inertial range and cannot be safely ignored.

For the case of two-dimensional turbulence, we argued [51, 52] that the subleading fluxes are
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associated with a subleading downscale energy cascade and a subleading inverse enstrophy cas-
cade that contribute linearly to the total energy spectrum in addition to the dominant contributions.
The two contributions are homogeneous solutions of the underlying statistical theory, which is in
fact linear. Furthermore, the two homogeneous solutions are independent of each other, so the
downscale energy cascade is independent of the downscale enstrophy flux ηuv and the downscale
enstrophy cascade is independent of the downscale energy flux εuv. As a result, in the downscale
inertial range, the total energy spectrum E(k) has the following three contributions:

E(k) = E(ε)
uv (k)+E(η)

uv (k)+E(p)
uv (k), ∀k�0 � 1, (43)

where E(ε)
uv (k), E(η)

uv (k) are the contributions of the downscale energy and enstrophy cascade, given
by

E(ε)
uv (k) = auvε2/3

uv k−5/3D
(ε)
uv (k�(ε)

uv )

E(η)
uv (k) = buvη2/3

uv k−3[χ + ln(k�0)]−1/3D
(η)
uv (k�(η)

uv ),
(44)

with D
(ε)
uv and D

(η)
uv describing the dissipative corrections. Here we use the logarithmic correction

of Kraichnan [67], adjusted by the constant χ of Bowman [13] for the contribution of the enstrophy
cascade. We have also assumed, without explicit justification, that we may ignore the possibility
of intermittency corrections to the subleading downscale energy cascade. For the downscale en-
strophy cascade intermittency corrections have been ruled out by Eyink [38]. For the downscale
energy cascade we conjecture that intermittency corrections are small for the same reasons as in

three-dimensional turbulence. The scales �
(ε)
uv , �

(η)
uv are the dissipation length scales for the down-

scale energy and enstrophy cascade. Finally, E(p)
uv (k) is the contribution from the effect of forcing

and the sweeping interactions and it represents a particular solution to the statistical theory. The
latter can become significant via the violation of statistical homogeneity caused by the boundary
conditions [50]. Thus, in the inertial range where the effect of forcing and dissipation can be
ignored, the energy spectrum will take the simple form in the downscale range:

E(k) ≈ auvε2/3
uv k−5/3 +buvη2/3

uv k−3[χ + ln(k�0)]−1/3. (45)

We see that the energy spectrum will take the slope of −3 for small k , and −5/3 for large k . The
transition from one slope to the other occurs at kt , given by εuvk2

t ∼ ηuv.
It should be emphasized that the formation of cascades observable in the energy spectrum is by

no means guaranteed. There are two prerequisites that need to be satisfied: first, the contribution

of the particular solution E (p)
uv (k) has to be negligible both downscale and upscale of the injection

scale, i.e.

E(p)
uv (k) � E(ε)

uv (k)+E(η)
uv (k), ∀k�0 � 1

E(p)
ir (k) � E(ε)

ir (k)+E(η)
ir (k), ∀k�0 � 1.

(46)

Second, the dissipative adjustment D
(η)
uv (k�(η)

uv ) and D
(ε)
uv (k�(ε)

uv ) of the homogeneous solution has
to be such that it does not destroy the power law scaling in the inertial range. Furthermore, the

dissipation scales �
(η)
uv and �

(ε)
uv have to be positioned so that the incoming energy and enstrophy

can be dissipated.
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The idea of two cascades in the same wavenumber region has an interesting precedent in the
case of three-dimensional turbulence, where there is interest in understanding the double cascade
of helicity and energy [1, 19, 88]. There, the situation is more straightforward because the helicity
cascade and the energy cascade reside in separate isotropic sectors of the SO(3) group [1, 6]. This
makes it easier to argue in support of a superposition principle.

In two-dimensional turbulence the situation is more interesting because both cascades reside in
the same isotropic sectors. The main argument in support of our conjecture was given in section
2 of Ref. 51. Additional evidence is given in section 3 of the same paper. It should be noted
that our main argument exploits the linearity of the exact statistical theory of two-dimensional
turbulence (i.e. the complete infinite system of equations governing the relevant fully-unfused
structure functions). Nonlinear results, such as the one that was proposed by Lilly [72] and more
recently by L’vov and Nazarenko [78], follow from closure models instead of the exact theory.
Likewise, phenomenological arguments with the eddy-turnover rate, such as the one by Kraichnan
[67], are essentially coming out of a 1-loop nonlinear closure theory, and would also lead to
nonlinear expressions for the energy spectrum. On the other hand, both closure models and the
superposition principle give the same prediction for the transition wavenumber, and disagree only
in the transition region.

D. Criticisms of the Superposition Principle

It should be noted that the superposition principle is not yet widely accepted by some re-
searchers in the turbulence community [34, 77]. A difficulty in accepting the idea of a downscale
energy cascade in two-dimensional turbulence is the fact that the cascade is hidden, and the cor-
responding energy flux is very small and vanishes rapidly with increasing Reynolds number. The
underlying question is to understand what should be meant by cascade for the case of finite viscos-
ity, considering that the existence of a uniform energy flux is not sufficient to imply the existence
of a local downscale energy cascade [27, 34].

The viewpoint that we have expressed in our previous work [49–52] is that an inclusive defini-
tion is that a cascade is a homogeneous solution to the MSR statistical theory of turbulence. One
may then narrow down this definition to define “local cascade” and “universal cascade” in various
ways. An inertial range exists when homogeneous solutions dominate the particular solution that
arises from the forcing region and the sweeping interactions. The existence of finite dissipation
modifies the homogeneous solutions in the same sense that the natural modes of a linear oscillator
become damped in the presence of friction. It is hard to deny that in two-dimensional turbulence,
for the downscale range, we have two homogeneous solutions: a solution that corresponds to the
downscale enstrophy cascade and a solution that corresponds to the downscale energy cascade
[51, 52]. Our argument is that, given the existence of these two solutions, the existence of a
downscale energy flux implies that both solutions are present. An alternative interpretation [34]
is to argue that the vanishing downscale energy flux is nothing more than a dissipative correction
of the enstrophy solution, and that only the enstrophy solution is present. The only way to dis-
tinguish between these two interpretations is to construct a counterexample where the downscale
energy flux does not vanish and is in fact large enough to bring up an observable transition. Such
a counterexample would have to involve a nonlinear dissipation term that can selectively dissipate
enstrophy without dissipating energy.

A more technical criticism of the superposition principle is that, for the downscale enstrophy
cascade solution, it is ambiguous whether the reducible contributions of unlinked Feynman dia-
grams dominate the irreducible contributions of linked Feynman diagrams [77]. If the reducible
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contributions dominate, then one should expect nonlinear cross-term contributions to the higher-
order structure functions, in addition to the contributions anticipated by the superposition princi-
ple. However, such cross-terms would be important only in the transition region and would not
affect the location of the transition wavenumber or the asymptotic scaling away from the transi-
tion region. Furthermore, in either case there will be no cross-terms for the second order structure
functions, and consequently for the energy spectrum.

E. The Difference Between 2D Turbulence and the Two-layer Model

In two-dimensional turbulence, the energy flux ΠE(k) and the enstrophy flux ΠG(k) are con-
strained by

k2ΠE(k)−ΠG(k) < 0, (47)

for all wavenumbers outside of the forcing range. This inequality was communicated to us by
Danilov [52, 53] and it implies that the contribution of the downscale energy cascade to the energy
spectrum is overwhelmed by the contribution of the downscale enstrophy cascade and cannot be
seen visually on a plot. This result was conjectured earlier by Smith [109] who debated the Tung-
Orlando theory [118] by arguing that the downscale energy cascade can never have enough flux
to move the transition wavenumber kt into the inertial range. The obvious counterargument is
that the two-layer model is a different dynamical system than the two-dimensional Navier-Stokes
equations, and that it is not obvious that the Danilov inequality cannot be violated in the two-
layer model [52, 117]. After the debate with Smith [109, 117], we identified [53] the essential
mathematical difference between two-dimensional turbulence and the two-layer quasi-geostrophic
model.

In the two-layer model forcing is due to thermal heating, which injects energy directly into the
baroclinic part of the total energy. The two-layer fluid sits atop of an Ekman boundary layer near
the ground, which introduces Ekman damping in the lower layer [58] but not in the upper layer.
Following Salmon [105], one may then derive the governing equations for the model, which read:

∂ζ1

∂ t
+ J(ψ1,ζ1 + f ) = −2 f

h
ω +d1 (48)

∂ζ2

∂ t
+ J(ψ2,ζ2 + f ) = +

2 f
h

ω +d2 +2e2 (49)

∂T
∂ t

+
1
2
[J(ψ1,T )+ J(ψ2,T )] = −N2

f
ω +Q0. (50)

Here, ζ1 = ∇2ψ1 is the relative vorticity of the top layer and ζ2 = ∇2ψ2 is the relative vorticity
of the bottom layer, and ω is the vertical velocity. The temperature equation is situated between
the two layers and it satisfies the geostrophic condition T = (2/h)(ψ1−ψ2) with h the separation
between the two layers. Furthermore, f is the Coriolis term, N is the Brunt-Väisälä frequency, and
Q0 is the thermal forcing on the temperature equation. The dissipation terms include momentum
dissipation of relative vorticity, in each layer, and Ekman damping from the lower boundary layer,
and they read:

d1 = (−1)κ+1ν∇2κζ1 (51)

d2 = (−1)κ+1ν∇2κζ2 (52)

e2 = −νEζ2. (53)
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This model can be reduced to a coupled 2D-like system by employing the temperature equation to
eliminate the vertical velocity ω . This leads to the definition of the potential vorticity q1 and q2 as

q1 = ∇2ψ1 + f +
k2

R

2
(ψ2 −ψ1) (54)

q2 = ∇2ψ2 + f − k2
R

2
(ψ2 −ψ1), (55)

with kR ≡ 2
√

2 f/(hN) the Rossby radius of deformation wavenumber. The governing equations
for q1 and q2 are shown to be

∂q1

∂ t
+ J(ψ1,q1) = f1 +d1 (56)

∂q2

∂ t
+ J(ψ2,q2) = f2 +d2 + e2, (57)

Here f1 and f2 is the thermal forcing on each layer given by f1 = −(k2
RQ)/(2 f ) and f2 =

(k2
RQ)/(2 f ) where Q = (1/4)k2

RhQ0.
The two inviscid quadratic invariants are the energy E and the total layer potential enstrophies

G1 and G2 given by

E ≡ 〈〈ψ1q1 +ψ2q2〉〉 (58)

G1 ≡ 〈〈q2
1〉〉, G2 ≡ 〈〈q2

2〉〉. (59)

The energy and enstrophy spectra are defined as

E(k) ≡ d
dk

〈〈ψ<k
1 q<k

1 〉〉+ d
dk

〈〈ψ<k
2 q<k

2 〉〉, (60)

G1(k) ≡ d
dk

〈〈q<k
1 q<k

1 〉〉, (61)

G2(k) ≡ d
dk

〈〈q<k
2 q<k

2 〉〉, (62)

and the total enstrophy spectrum G(k) is G(k) = G1(k)+ G2(k). It is also useful to distinguish
between barotropic energy and baroclinic energy as follows: Let ψ ≡ (ψ1 +ψ2)/2 and τ ≡ (ψ1 −
ψ2)/2. So, ψ1 = ψ + τ and ψ2 = ψ − τ . Now we define three spectra EK(k), EP(k), and EC(k) in
terms of ψ and τ:

EK(k) ≡ 2k2 d
dk

〈〈ψ<kψ<k〉〉, (63)

EP(k) ≡ 2(k2 + k2
R)

d
dk

〈〈τ<kτ<k〉〉, (64)

EC(k) ≡ 2k2 d
dk

〈〈ψ<kτ<k〉〉. (65)

Here EK(k) is the barotropic energy spectrum and EP(k) the baroclinic energy spectrum. It is easy
to show that the definitions are self-consistent, i.e. E(k) = EK(k)+EP(k). The physical interpre-
tation of EC(k) is that it represents the difference in potential enstrophy distribution between the
two layers, and it is given by

EC(k) =
G1(k)−G2(k)

2(k2 + k2
R)

. (66)
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We have shown [53] that it is the asymmetric presence of Ekman damping e2 = −νEζ2 on the
bottom layer but not the top layer which causes the violation of the Danilov inequality (47) in the
two-layer model. As a result, the top layer has more enstrophy than the bottom layer, as is realistic
in the atmosphere, and provided that the difference in enstrophy between the two layers is large
enough, the subleading downscale energy cascade will be observable in the energy spectrum. If
one artificially adds an identical Ekman damping e1 = −νEζ1 in the upper layer it can be easily
shown that Danilov’s inequality (47) applies. In that case of symmetric dissipation, the subleading
downscale energy cascade will be hidden by the dominant downscale enstrophy cascade.

For the case of asymmetric Ekman damping that we are considering here, we have shown [53]
that a sufficient condition to satisfy the Danilov inequality is

νE < 4νk2p
max

(
kmax

kR

)2

. (67)

Here kmax is either the truncation wavenumber in the numerical model, or, in the theoretical case
of infinite resolutions, is the hyperviscosity dissipation wavenumber, beyond which the spec-
tral enstrophy dissipation rate becomes negligible. Equivalently, a necessary condition to violate
Danilov’s inequality is

νE > 4νk2p
max

(
kmax

kR

)2

. (68)

We have also derived [53] a necessary and sufficient condition for violating the Danilov in-
equality. However, the price that must be paid for doing so is that the condition is uncontrolled.
By this, we mean that the condition has the form

νEk2
R > Λνk2p+2

max , (69)

but it is not possible to find a universal value for Λ that will always work. We have shown that the
necessary requirement needed to have a sufficient condition for violating the Danilov inequality at
wavenumber k is

G1(q)− (1+4(q/kR)2)G2(q) > 2q2EK(q), (70)

for all q such that k < q < kmax.
It should be noted that the simulation of Tung and Orlando [118] has already shown that it is

possible to have an observable downscale energy cascade. The only issue that required clarification
was to understand why it happens in the two-layer model but not in two-dimensional turbulence,
when the value of Ekman damping is larger than the subgrid hyperdiffusion.

F. Surface Quasi-geostrophic Models

Although the troposphere is thin, it is anisotropic in the vertical. In meteorological jargon it is
said that the dynamics of the troposphere is baroclinic. Baroclinic instability in the troposphere
has traditionally been studied using two-layer models [58]. We have discussed in previous sections
that a prerequisite of a model of the large-scale turbulence in the troposphere is the ability to model
in some way its baroclinicity. In the case of two-layer model, it is essential that the two layers of
the model do not behave in a similar way and that there is a large vertical difference. Otherwise,
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the model will degenerate into two two-dimensional turbulence layers, and we know that for each
layer Danilov’s inequality would hold and no transition in the Nastrom-Gage spectrum can be
obtained.

The troposphere’s vertical anisotropy is actually more extreme than that in a two-layer model.
Because of fast mixing in the vertical, the potential vorticity is homogenized over the depth of
the troposphere, thus creating a surface of discontinuity at the tropopause, which separates a zero-
potential vorticity troposphere from a high potential vorticity stratosphere. The instability arises
from the interaction of the tropopause and the ground has been studied using the so-called Eady
model [33], which is actually simpler than the two-layer model. The nonlinear version of the Eady
model was studied by Blumen [7, 8] and by Held and Pierrehumpert [55, 98]. Although we have
not yet completed a simulation of the Nastrom-Gage spectrum using such a model, called 2-surface
sQG, by Muraki and Hakim [89], we have previously derived some theoretical results [53, 119]
where we have shown that for large wavenumbers k the energy spectrum should behave like k−5/3.
Such a downscale energy flux remains finite even as viscosity is reduced to zero from above [119].
It then appears that in such a model the mesoscale spectrum of −5/3 can be simulated, at least the
upper part (the longer scales) of the −5/3 spectrum. As pointed out previously [53], for the shorter
wave part of the mesoscale spectrum, especially for length scales shorter than 100km, QG scaling
fails and other motion (such as stratified turbulence, and three-dimensional turbulence) takes over.
Nevertheless, dimensional analysis would still yield a −5/3 energy spectrum as long as there is a
downscale energy flux through this range.

V. THE METHOD OF SPECTRAL REDUCTION

In standard numerical simulations of two-dimensional turbulence and quasi-geostrophic tur-
bulence we have to trade-off numerical resolution with run-time. Many of the really interesting
questions require both very high numerical resolution and very long run-time simultaneously. An
interesting option for outflanking this problem is the method of Spectral Reduction [14, 15]. This
method reduces the governing equations to a small number of wavenumber shells with each shell
further subdivided into a small number of sectors. In this sense, one can say that spectral reduction
is a method for generating a “realistic” shell model for the nonlinear dynamics of the Navier-Stokes
equations.

It has been known for some time that shell models can reproduce the intermittency corrections
of three-dimensional turbulence in agreement with experimental measurements [5, 10]. It still
remains a mystery why they work so well, especially given that there is no direct mathematical
relationship between the models themselves and the Navier-Stokes equations. However, Spectral
Reduction differs from shell models in one crucially important way: It is an approximation which
is applied directly on the Navier-Stokes equations and thus the resulting ODE model is a realistic
approximation of the shell interactions rather than an ad hoc cascade model. Furthermore, it
preserves the conservation laws of the original equations. Apparently, the method exploits some
redundancy that is introduced into the spectral representation of the velocity field after taking a
time average. This allows the discretization to converge extremely rapidly, as long as the results
are time-averaged.

Because the method is not well known, we give a brief technical description. Let a(x, t) and
b(x, t) be two fields with Fourier transforms âk and b̂k, and let Vkpq be the kernel of the Jacobian
operator defined as

Ĵk =
∫

dp
∫

dq Vkpqâpb̂∗q, (71)
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where Ĵk is the Fourier transform of J(a,b). Let D⊆R
2−{0} be a bounded continuous domain of

wavenumbers, excluding a neighborhood of 0, that has been partitioned into N connected regions
Rn ⊂ D. Each region has area An and a center-of-mass wavenumber Kn defined as

An =
∫

Rn

dk (72)

Kn =
1
An

∫
Rn

‖k‖ dk. (73)

Next, we associate with each region an average vorticity Zn given by

Zn =
1
An

∫
Rn

ζ̂k dk, (74)

and using the ad-hoc “approximation” ζ̂k = Zn,∀k ∈ Rn we obtain the following governing equa-
tion for Zn:

∂Zn

∂ t
+ Jn = DnZn +Fn, (75)

where Dn represents the dissipation operators and Fn the forcing term, and they are given by

Dn =
1
An

∫
Rn

(−ν‖k‖2κ −β‖k‖−2m) dk (76)

Fn =
1
An

∫
Rn

f̂k dk. (77)

The non-linearity J(ψ,ζ ) is in the term Jn, which is further approximated by

Jn =
N

∑
a=1

N

∑
b=1

Vnab
ZaZ∗

b

K2
b

(78)

Vnab =
1

AnAaAb

[∫
Rn

dk
∫

Ra

dp
∫

Rb

dqVkpq

]
. (79)

The conserved energy E and enstrophy G for this system are given by

E =
N

∑
n=1

|Zn|2
K2

n
An (80)

G =
N

∑
n=1

|Zn|2An. (81)

It has been demonstrated that spectral reduction can reproduce the enstrophy cascade of two-
dimensional turbulence [15], and furthermore in agreement with the predictions of Falkovich and
Lebedev [42, 43]. This is very strong evidence that the method is effective in characterizing the
statistical features of the enstrophy cascade. Recall that the possibility of intermittency corrections
for the downscale enstrophy cascade has been rigorously ruled out [38], so these numerical predic-
tions are in agreement with a rigorous mathematical result. The shortcoming of spectral reduction
is that it does not calculate correctly the absolute equilibrium energy spectrum of two-dimensional
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turbulence [16]. It has been shown [16] that this can be corrected if one uses instead the rescaled
equations

A0

An

∂Zn

∂ t
+ Jn = DnZn +Fn. (82)

However, the rescaling comes with the price that for numerical stability it is now necessary to
use a smaller timestep. It has also been found that it is necessary to use the rescaled equations to
reproduce the inverse energy cascade [16]. It is not well-understood why the enstrophy cascade can
be obtained without rescaling and, more importantly, why the inverse energy cascade cannot. We
conjecture that the reason is that the inverse energy cascade is very close to absolute equilibrium
[79] whereas the enstrophy cascade is not. In any event, even with the rescaled spectral reduction,
we still benefit in computation time from not having to work with very large data sets and Fourier
transforms at every step.

From a mathematical perspective, the main idea behind Spectral Reduction is having a method
for approximating nonlinear terms that can be expressed in terms of Jacobian operators J(a,b).
This means that it is possible in principle to extend the method to any physical model where the
nonlinear terms can be written terms of Jacobians. This is important because it is known that
3D large-scale flows conserve potential vorticity layerwise [17]. For each layer of the numerical
model, the nonlinear term is in the form of a Jacobian in two dimensions. This covers the two-
layer model but it also allows the possibility to consider models with many layers. Such models
would be very difficult to examine with direct numerical simulation.

VI. CONCLUSIONS

We would now like to summarize the main points of this paper. We have seen that two-
dimensional turbulence has been investigated numerically to considerable detail. Both the down-
scale enstrophy cascade and the inverse energy cascade have been successfully observed. How-
ever, neither cascade is as robust as the downscale energy cascade of three-dimensional turbulence.
The disruption of cascades in two-dimensional turbulence is associated physically with the emer-
gence of long-lived coherent structures. It is not really understood why these coherent structures
emerge in two-dimensional turbulence but not in three-dimensional turbulence. However, we have
reviewed some significant breakthroughs in understanding the particulars of the cascades of two-
dimensional turbulence, when these cascades are not disrupted.

The situation becomes even more interesting for the case of flows that are approximately two-
dimensional, and especially in the context of understanding the Nastrom Gage energy spectrum of
the atmosphere. We have reviewed some of the proposed theories, and discussed more extensively
the Tung-Orlando theory. All that can be said with certainty is that the work to date in this direction
raises more questions than it answers! Consequently an open mind is needed to make further
progress.

Although there is considerable interest in two-dimensional turbulence on the one hand, and in
General Circulation Models on the other hand, there is relatively limited interest in the theoretical
understanding of simpler models in between these two extremes, such as, for example, the two-
layer quasi-geostrophic model. Finite layer quasi-geostrophic models have the advantage that they
are possibly within range of theoretical analysis using tools that have proved themselves in studies
of two-dimensional turbulence. It is worthwhile to study these models for two reasons: first,
“because they are there”; second, because, as Held [56] has pointed out, genuine understanding
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arises from a comprehensive study of the entire spectrum of models, from the simplest to the most
realistic.

We have concluded our review with a brief discussion of the method of spectral reduction.
We suggest that this method could prove effective in investigating the phenomenology of quasi-
geostrophic models.
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