69 research outputs found

    Phenotypic screen for oxygen consumption rate identifies an anti-cancer naphthoquinone that induces mitochondrial oxidative stress.

    Get PDF
    A hallmark of cancer cells is their ability to reprogram nutrient metabolism. Thus, disruption to this phenotype is a potential avenue for anti-cancer therapy. Herein we used a phenotypic chemical library screening approach to identify molecules that disrupted nutrient metabolism (by increasing cellular oxygen consumption rate) and were toxic to cancer cells. From this screen we discovered a 1,4-Naphthoquinone (referred to as BH10) that is toxic to a broad range of cancer cell types. BH10 has improved cancer-selective toxicity compared to doxorubicin, 17-AAG, vitamin K3, and other known anti-cancer quinones. BH10 increases glucose oxidation via both mitochondrial and pentose phosphate pathways, decreases glycolysis, lowers GSH:GSSG and NAPDH/NAPD+ ratios exclusively in cancer cells, and induces necrosis. BH10 targets mitochondrial redox defence as evidenced by increased mitochondrial peroxiredoxin 3 oxidation and decreased mitochondrial aconitase activity, without changes in markers of cytosolic or nuclear damage. Over-expression of mitochondria-targeted catalase protects cells from BH10-mediated toxicity, while the thioredoxin reductase inhibitor auranofin synergistically enhances BH10-induced peroxiredoxin 3 oxidation and cytotoxicity. Overall, BH10 represents a 1,4-Naphthoquinone with an improved cancer-selective cytotoxicity profile via its mitochondrial specificity

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Non-invasive diagnostic tests for Helicobacter pylori infection

    Get PDF
    BACKGROUND: Helicobacter pylori (H pylori) infection has been implicated in a number of malignancies and non-malignant conditions including peptic ulcers, non-ulcer dyspepsia, recurrent peptic ulcer bleeding, unexplained iron deficiency anaemia, idiopathic thrombocytopaenia purpura, and colorectal adenomas. The confirmatory diagnosis of H pylori is by endoscopic biopsy, followed by histopathological examination using haemotoxylin and eosin (H & E) stain or special stains such as Giemsa stain and Warthin-Starry stain. Special stains are more accurate than H & E stain. There is significant uncertainty about the diagnostic accuracy of non-invasive tests for diagnosis of H pylori. OBJECTIVES: To compare the diagnostic accuracy of urea breath test, serology, and stool antigen test, used alone or in combination, for diagnosis of H pylori infection in symptomatic and asymptomatic people, so that eradication therapy for H pylori can be started. SEARCH METHODS: We searched MEDLINE, Embase, the Science Citation Index and the National Institute for Health Research Health Technology Assessment Database on 4 March 2016. We screened references in the included studies to identify additional studies. We also conducted citation searches of relevant studies, most recently on 4 December 2016. We did not restrict studies by language or publication status, or whether data were collected prospectively or retrospectively. SELECTION CRITERIA: We included diagnostic accuracy studies that evaluated at least one of the index tests (urea breath test using isotopes such as13C or14C, serology and stool antigen test) against the reference standard (histopathological examination using H & E stain, special stains or immunohistochemical stain) in people suspected of having H pylori infection. DATA COLLECTION AND ANALYSIS: Two review authors independently screened the references to identify relevant studies and independently extracted data. We assessed the methodological quality of studies using the QUADAS-2 tool. We performed meta-analysis by using the hierarchical summary receiver operating characteristic (HSROC) model to estimate and compare SROC curves. Where appropriate, we used bivariate or univariate logistic regression models to estimate summary sensitivities and specificities. MAIN RESULTS: We included 101 studies involving 11,003 participants, of which 5839 participants (53.1%) had H pylori infection. The prevalence of H pylori infection in the studies ranged from 15.2% to 94.7%, with a median prevalence of 53.7% (interquartile range 42.0% to 66.5%). Most of the studies (57%) included participants with dyspepsia and 53 studies excluded participants who recently had proton pump inhibitors or antibiotics.There was at least an unclear risk of bias or unclear applicability concern for each study.Of the 101 studies, 15 compared the accuracy of two index tests and two studies compared the accuracy of three index tests. Thirty-four studies (4242 participants) evaluated serology; 29 studies (2988 participants) evaluated stool antigen test; 34 studies (3139 participants) evaluated urea breath test-13C; 21 studies (1810 participants) evaluated urea breath test-14C; and two studies (127 participants) evaluated urea breath test but did not report the isotope used. The thresholds used to define test positivity and the staining techniques used for histopathological examination (reference standard) varied between studies. Due to sparse data for each threshold reported, it was not possible to identify the best threshold for each test.Using data from 99 studies in an indirect test comparison, there was statistical evidence of a difference in diagnostic accuracy between urea breath test-13C, urea breath test-14C, serology and stool antigen test (P = 0.024). The diagnostic odds ratios for urea breath test-13C, urea breath test-14C, serology, and stool antigen test were 153 (95% confidence interval (CI) 73.7 to 316), 105 (95% CI 74.0 to 150), 47.4 (95% CI 25.5 to 88.1) and 45.1 (95% CI 24.2 to 84.1). The sensitivity (95% CI) estimated at a fixed specificity of 0.90 (median from studies across the four tests), was 0.94 (95% CI 0.89 to 0.97) for urea breath test-13C, 0.92 (95% CI 0.89 to 0.94) for urea breath test-14C, 0.84 (95% CI 0.74 to 0.91) for serology, and 0.83 (95% CI 0.73 to 0.90) for stool antigen test. This implies that on average, given a specificity of 0.90 and prevalence of 53.7% (median specificity and prevalence in the studies), out of 1000 people tested for H pylori infection, there will be 46 false positives (people without H pylori infection who will be diagnosed as having H pylori infection). In this hypothetical cohort, urea breath test-13C, urea breath test-14C, serology, and stool antigen test will give 30 (95% CI 15 to 58), 42 (95% CI 30 to 58), 86 (95% CI 50 to 140), and 89 (95% CI 52 to 146) false negatives respectively (people with H pylori infection for whom the diagnosis of H pylori will be missed).Direct comparisons were based on few head-to-head studies. The ratios of diagnostic odds ratios (DORs) were 0.68 (95% CI 0.12 to 3.70; P = 0.56) for urea breath test-13C versus serology (seven studies), and 0.88 (95% CI 0.14 to 5.56; P = 0.84) for urea breath test-13C versus stool antigen test (seven studies). The 95% CIs of these estimates overlap with those of the ratios of DORs from the indirect comparison. Data were limited or unavailable for meta-analysis of other direct comparisons. AUTHORS' CONCLUSIONS: In people without a history of gastrectomy and those who have not recently had antibiotics or proton ,pump inhibitors, urea breath tests had high diagnostic accuracy while serology and stool antigen tests were less accurate for diagnosis of Helicobacter pylori infection.This is based on an indirect test comparison (with potential for bias due to confounding), as evidence from direct comparisons was limited or unavailable. The thresholds used for these tests were highly variable and we were unable to identify specific thresholds that might be useful in clinical practice.We need further comparative studies of high methodological quality to obtain more reliable evidence of relative accuracy between the tests. Such studies should be conducted prospectively in a representative spectrum of participants and clearly reported to ensure low risk of bias. Most importantly, studies should prespecify and clearly report thresholds used, and should avoid inappropriate exclusions

    Mass Analysis

    No full text
    Modern daymass analyzer technologies have, together with soft ionization techniques, opened powerful new avenues by which insights can be gained into polymer systems using mass spectrometry (MS). Recent years have seen important advances in mass analyzer design, and a suite of effectivemass analysis options are currently available to the polymer chemist. In assessing the suitability of different mass analyzers toward the examination of a given polymer sample, a range of factors, ultimately driven by the scientific questions being pursued, must be taken into account. It is the aim of the current chapter to provide a reference point for making such assessments

    Living star polymer formation (RAFT) studied via electrospray ionization mass spectrometry

    No full text
    A mass spectrometry analysis has been performed on complex architecture polymeric material produced during reversible addition fragmentation chain transfer (RAFT) polymerizations yielding star polymers. Para-acetoxystyrene (AcOSty) has been polymerized at 60 °C, using azobisisobutyronitrile (AIBN) as the thermally decomposing initiator, in the presence of the R-group approach tetrafunctional RAFT agent (1,2,4,5-tetrakis-(2-phenyl-thioacetyl- sulfanylmethyl)-benzene). In addition to ideal star material, a variety of products unique to this mode of polymerization have been identified. These include star-star couples, stars terminated with initiator fragments, star-star couples terminated with initiator fragments and linear polymers, supporting the notion that these species are responsible for the structured molecular-weight distributions measured for these systems when analyzed via gel permeation chromatography. The analysis begins with a study of AcOSty polymerizing (i) in the absence of any mediating agent and (ii) in the presence of a monofunctional RAFT agent, revealing the mode of termination of propagating poly(AcOSty) radicals as combination and that some ionization biases exist among variants of poly (AcOSty). The interpretation of the mass spectrometry data has been aided by a novel kinetic model of star polymerizations, allowing the rationalization of experimental observations with theoretical expectations. © 2008 Wiley Periodicals, Inc

    Living star polymer formation: Detailed assessment of poly(acrylate) radical reaction pathways via ESI-MS

    No full text
    The generation of star polymers via living polymerization protocols is well documented; however, the impact of midchain radicals (MCRs) on the precise formation pathways under operation in living acrylate star polymerizations is still poorly understood. In the present study, electrospray ionization-mass spectrometry (ESI-MS) technology has been applied to map the products generated in R-group approach reversible addition fragmentation chain transfer (RAFT) methyl acrylate (MA) star polymerizations in order to gain insight into the precise formation pathways under operation in such systems. The polymerizations were conducted at 65°C using the tetrafunctional RAFT agent 1,2,4,5-tetrakis(2-phenylthioacetylsulfanylmethyl)benzene and 2,2′-azobis(isobutyronitrile) (AIBN) as the thermally decomposing initiator. Initiator fragment derived linear chains, ideal stars, star-star couples, and other terminated star products formed as a result of combination and disproportionation reactions were successfully imaged. Additionally, MCR derived products that lie outside of the conventional R-group approach RAFT star polymerization mechanistic scheme were identified. Products associated with termination reactions involving intermolecularly formed MCRs on star arms and linear chains were observed; specifically, structures formed from MCR termination with propagating stars or radical carrying star cores, or with initiator fragments or propagating initiator derived linear chains. Additionally, structures produced via repropagation of intermolecularly formed MCRs on star arms were also identified. The products generated from MCR-derived reaction pathways were imaged from a degree of polymerization (DPn) as low as one, indicating that MCRs can form upon molecules carrying only a single monomer unit. © 2008 American Chemical Society

    Mass spectrometric investigations into free radical polymerisation reaction mechanisms

    Full text link
    Contemporary mass spectrometry (MS) instrumentation featuring electrospray ionisation (ESI) or matrix-assisted laser desorption/ionisation (MALDI) ion sources were used to characterise the polymer distributions generated in various free radical polymerisations, allowing insights to be gained into the reaction mechanisms operating in these systems.In studying atom transfer radical polymerisation (ATRP) mediated star polymerisations of methyl acrylate (MA), ESI was found to be more effective in obtaining a comprehensive list of the distinct products present in the samples under investigation when compared to the employed MALDI technique. Furthermore, these studies showed that terminal Br losses observed at relatively high monomer to polymer conversions could be accounted for via mechanisms involving the acetone derived radicals (CH3)2ĊOH, ĊH3 and ĊH2COCH3.Through the use of ESI, it was found that for bulk polymerisations of MA and aqueous media polymerisations of N-isopropylacrylamide (NIPAAm) initiated using 60Co γ-irradiation and mediated via reversible addition-fragmentation chain transfer (RAFT), hydrogen radicals formed via the radiolysis of RAFT agent and/or monomer, and in the case of the NIPAAm system, water, are capable of initiating the polymerisations. In the NIPAAm polymerisations under scrutiny, it was also observed that hydroxyl radicals generated via the radiolysis of water may contribute towards the initiation process, and that propagating chains can potentially become terminated via trithiocarbonate cleavage reactions.By using ESI instruments to characterise oligomer samples produced via the free radical polymerisations of vinyl phosphonates, it was observed that chain propagations are initiated via activated monomer radicals, which likely form as a result of transfer reactions involving initiator fragments and vinyl phosphonate monomer units. Transfer to monomer reactions were suggested to limit chain growth in these systems, and evidence was also found for scission reactions involving alkoxy moieties which are formed via intramolecular methine carbon abstraction reactions.Characterisation of the polymer distributions generated in R-group approach RAFT MA star polymerisations using an ESI instrument allowed formation processes operating in acrylate star living/controlled radical polymerisations (CRPs) to be ascertained. Initiator fragment derived linear chains, ideal stars, star-star couples, and terminated star products formed as a result of disproportionation and combination reactions were detected. Evidence for mid-chain radical (MCR) derived reaction pathways was also observed; specifically, for termination reactions involving intermolecularly formed MCRs on both star arms and linear chains, and for re-propagation of intermolecularly formed MCRs on star arms

    MicroRNA regulatory mechanisms play different roles in arabidopsis

    No full text
    Plant microRNAs (miRNAs) operate by guiding the cleavage or translational inhibition of mRNA targets. They act as key gene regulators for development and environmental adaptation, and Dicer-partnering proteins DRB1 and DRB2 govern which form of regulation plays the dominant role. Mutation of Drb1 impairs transcript cleavage, whereas mutation of Drb2 ablates translational inhibition. Regulation of gene expression by miRNA-guided cleavage has been extensively studied, but there is much less information about genes regulated through miRNA-mediated translation inhibition. Here, we compared the proteomes of drb1 and drb2 mutants to gain insight into the indirect effect of the different miRNA regulatory mechanisms in Arabidopsis thaliana. Our results show that miRNAs operating through transcript cleavage regulate a broad spectrum of processes, including catabolism and anabolism, and this was particularly obvious in the fatty acid degradation pathway. Enzymes catalyzing each step of this pathway were upregulated in drb1. In contrast, DRB2-associated translational inhibition appears to be less ubiquitous and specifically aimed toward responses against abiotic or biotic stimuli

    Gene regulation by translational inhibition is determined by Dicer partnering proteins

    No full text
    MicroRNAs (miRNAs) are small regulatory RNAs produced by Dicer proteins that regulate gene expression in development and adaptive responses to the environment1,​2,​3,​4. In animals, the degree of base pairing between a miRNA and its target messenger RNA seems to determine whether the regulation occurs through cleavage or translation inhibition1. In contrast, the selection of regulatory mechanisms is independent of the degree of mismatch between a plant miRNA and its target transcript5. However, the components and mechanism(s) that determine whether a plant miRNA ultimately regulates its targets by guiding cleavage or translational inhibition are unknown6. Here we show that the form of regulatory action directed by a plant miRNA is determined by DRB2, a DICER-LIKE1 (DCL1) partnering protein. The dependence of DCL1 on DRB1 for miRNA biogenesis is well characterized7,​8,​9, but we show that it is only required for miRNA-guided transcript cleavage. We found that DRB2 determines miRNA-guided translational inhibition and represses DRB1 expression, thereby allowing the active selection of miRNA regulatory action. Furthermore, our results reveal that the core silencing proteins ARGONAUTE1 (AGO1) and SERRATE (SE) are highly regulated by miRNA-guided translational inhibition. DRB2 has been remarkably conserved throughout plant evolution, raising the possibility that translational repression is the ancient form of miRNA-directed gene regulation in plants, and that Dicer partnering proteins, such as human TRBP, might play a similar role in other eukaryotic systems

    Enhanced ionization in electrospray ionization mass spectrometry of labile end-group-containing polystyrenes using silver(I) tetrafluoroborate as doping salt

    No full text
    The use of silver tetrafluoroborate as a doping salt to achieve efficient and soft desorption/ionization of labile end-group-carrying polystyrene during electrospray ionization is demonstrated. Polystyrene carrying a dithioester end group prepared via reversible addition fragmentation chain transfer (RAFT) chemistry (using the RAFT agent cumyl phenyldithioacetate) as well as a commercial polymer standard prepared by anionic polymerization serve as model compounds. By employing silver tetrafluoroborate as ionization agent, an increase in ion count of more than one order of magnitude was achieved compared to ionization with sodium iodide. Little loss of the end group occurred via elimination of the dithioacid to yield vinyl-terminated polymer. A possible mechanism is given for catalysis of the cleavage reaction in the presence of silver salts. Side-product formation due to thermal or collision induced loss of the dithioester was kept at a minimum under optimized source conditions. Thus, we introduce a novel soft ionization protocol for polystyrenes, which are often difficult to ionize. © 2008 American Chemical Society
    corecore