78 research outputs found
Recommended from our members
Discovery of a dune-building hybrid beachgrass (Ammophila arenaria × A. breviligulata) in the U.S. Pacific Northwest
The production of novel hybrid zones is an ecologically important consequence of globally increasing rates of species introductions and invasions. Interspecific hybridization can facilitate gene flow between parent species or produce novel taxa that may alter invasion dynamics or ecosystem services. The coastal sand dunes of the U.S. Pacific Northwest coast are densely populated by two non-native, congeneric, dune-building beachgrasses (Ammophila arenaria and A. breviligulata). Here, we present morphological, cytological, and genetic evidence that the two beachgrass species have hybridized in this globally unique range overlap. The A. arenaria × A. breviligulata hybrid has been found at 12 coastal sites in Washington and Oregon. It is a first-generation hybrid between the beachgrass species as evidenced by genome size comparisons and single nucleotide polymorphism genotyping. It is intermediate between the parent grasses in many morphological characters but exceeds both parents in shoot height, a trait associated with dune-building potential. Understanding the ecological and population genetic consequences of this novel hybridization event is of the utmost importance in a system where any change in dominant beachgrass species can have large effects on both biodiversity management and coastal protection
Recommended from our members
The complex net effect of reciprocal interactions and recruitment facilitation maintains an intertidal kelp community
1. Theoretical and empirical ecology has transitioned from a focus on the role of negative interactions in species coexistence to a more pluralistic view that acknowledges that coexistence in natural communities is more complex, and depends on species interactions that vary in strength, sign, and reciprocity, and such contexts as the environment and life-history stage. 2. We used a whole-community approach to examine how species interactions contribute to the maintenance of a rocky intertidal macroalgal canopy–understorey assemblage. We determined both the types of interactions in this network, and whether interactions were sensitive to environmental gradients. 3. Focusing on a structurally dominant canopy kelp Saccharina sessilis, and its diverse co-occurring understorey assemblage, we evaluated the role of the understorey in controlling S. sessilis recruitment and quantified the reciprocal effect of the S. sessilis canopy and understorey on one another using a removal experiment replicated across 600 km of coastline. We determined the sensitivity of interactions to natural variation in light and nutrient availability (replicated among four regions on the N.E. Pacific coast), and under different wave conditions (three wave regimes). 4. Surprisingly, species interactions were similar across sites and thus not context-dependent. Unexpectedly, the understorey community had a strong positive effect on the S. sessilis canopy, whereby the adult canopy decreased dramatically following understorey removal. Additionally, S. sessilis recruitment depended on the presence of understorey coralline algal turf. In turn, the canopy had a neutral effect on the coralline understorey, but a negative effect on non-calcifying algal turfs, likely eventually generating positive indirect canopy effects on the coralline understorey. Density-dependent intraspecific competition between S. sessilis adults and recruits may moderate this positive feedback between the S. sessilis canopy and coralline understorey. 5. Synthesis. Our research highlights the importance of positive interactions for coexistence in natural communities, and the necessity of studying multiple life-history stages and reciprocal species interactions in order to elucidate the mechanisms that maintain diversity.Keywords: marine, plant-plant interactions, aquatic plant ecology, positive interactions, environmental gradients, benthic, macroalga
Recommended from our members
Coastal protection and conservation on sandy beaches and dunes : Context-dependent tradeoffs in ecosystem service supply
Managing multiple ecosystem services (ESs) across landscapes presents a central challenge for ecosystem-based management, because services often exhibit spatiotemporal variation and weak associations with co-occurring ESs. Further focus on the mechanistic relationships among ESs and their underlying biophysical processes provides greater insight into the causes of variation and covariation among ESs, thus serving as a guide to enhance their supply while preventing adverse outcomes. Here, we used the U.S. Pacific Northwest coastal dune ecosystem to examine how invasive beachgrass management affects three ESs: coastal protection, western snowy plover conservation, and endemic foredune plant conservation. At seven coastal dune habitat restoration areas, we observed spatial variation in the supply of each ES and further identified a tradeoff between western snowy plover conservation and coastal protection. While the ESs were collectively influenced by the invasive beachgrasses and the foredunes they create, the magnitude of the synergies and tradeoffs were influenced by numerous non-shared drivers, including nearshore geomorphology, changes in foredune shape as a result of restoration, and other management actions irrespective of restoration. Incorporation of these shared and non-shared drivers into future coastal management planning may reduce tradeoffs among Pacific Northwest dune ESs. With better understanding of ES relationships, it becomes possible to identify management actions that may enhance synergies and mitigate tradeoffs, leading to better decisions for nature and people. Key words: coastal protection; conservation; ecosystem management; ecosystem services; natural capital; restoration
Recommended from our members
Are meta-ecosystems organized hierarchically? A model and test in rocky intertidal habitats
Ecosystems are shaped by processes occurring and interacting over multiple temporal and spatial scales. Theory suggests such complexity can be simplified by focusing on processes sharing the same scale as the pattern of interest. This scale-dependent approach to studying communities has been challenged by multiscale meta-ecosystem theory, which recognizes that systems are interconnected by the movement of ‘‘ecological subsidies’’ and suggests that cross-scale feedbacks between local and regional processes can be equally important for understanding community structure. We reconcile these two perspectives by developing and testing a hierarchical meta-ecosystem model. The model predicts local community responses to connectivity over multiple oceanographic spatial scales, defined as macro- (100s of km), meso- (10s of km), and local scale (100s of m). It assumes that local communities occur in distinct regions and that connectivity effects are strongest among local sites. Predictions are that if macroscale processes dominate, then regardless of mesoscale differences, (1) local communities will be similar, and (2) will be even more so with increased connectivity. With dominance of mesoscale (i.e., regional) processes, (3) local structure will be similar within but distinct between regions, and (4) with increased connectivity similar both within and among regions. With dominance of local-scale processes, (5) local communities will differ both within and among regions, and (6) with increased connectivity be similar within but not between regions. We tested the model by evaluating rocky intertidal community structure patterns with variation in ecological subsidies and environmental conditions at 13 sites spanning 725 km of the northern California Current system. External factors operating at meso- and local scales had strong effects, explaining 52% and 27% of the variance, respectively, in community structure. Sessile invertebrate and predator dominance was associated with weaker upwelling, higher phytoplankton abundance, and higher recruitment, and the opposite was true for macrophyte dominance. Overall, our results support the theory that meta-ecosystems are organized hierarchically, with environmental processes dominating at meso- to macroscales and ecological processes playing a more important role at local scales, but with important bidirectional cross-scale interactions.Keywords: variation partitioning, meta-ecosystems, ecological subsidies, relative importance, spatial scale, oceanographic conditions, coastal ecosystems, rocky intertidal communities, ecosystem dynamics, northern California Current large marine ecosyste
Recommended from our members
Are large macroalgal blooms necessarily bad? nutrient impacts on seagrass in upwelling-influenced estuaries
Knowledge of nutrient pathways and their resulting ecological interactions can alleviate numerous environmental problems associated with nutrient increases in both natural and managed systems. Although not unique, coastal systems are particularly prone to complex ecological interactions resulting from nutrient inputs from both the land and sea. Nutrient inputs to coastal systems often spur ulvoid macroalgal blooms, with negative consequences for seagrasses, primarily through shading, as well as through changes in local biogeochemistry. We conducted complementary field and mesocosm experiments in an upwelling-influenced estuary, where marine-derived nutrients dominate, to understand the direct and indirect effects of nutrients on the macroalgal–eelgrass (Zostera marina L.) interaction. In the field experiment, we found weak evidence that nutrients and/or macroalgal treatments had a negative effect on eelgrass. However, in the mesocosm experiment, we found that a combination of nutrient and macroalgal treatments led to strongly negative eelgrass responses, primarily via indirect effects associated with macroalgal additions. Together, increased total light attenuation and decreased sediment oxygen levels were associated with larger effects on eelgrass than shading alone, which was evaluated using mimic algae treatments that did not alter sediment redox potential. Nutrient addition in the mesocosms directly affected seagrass density, biomass, and morphology, but not as strongly as macroalgae. We hypothesize that the contrary results from these parallel experiments are a consequence of differences in the hydrodynamics between field and mesocosm settings. We suggest that the high rates of water movement and tidal submersion of our intertidal field experiments alleviated the light reduction and negative biogeochemical changes in the sediment associated with macroalgal canopies, as well as the nutrient effects observed in the mesocosm experiments. Furthermore, adaptation of ulvoids and eelgrass to high, but variable, background nutrient concentrations in upwelling-influenced estuaries may partly explain the venue-specific results reported here. In order to manage critical seagrass habitats, nutrient criteria and macroalgal indicators must consider variability in marine-based nutrient delivery and local physical conditions among estuaries.This is the publisher’s final pdf. The published article is copyrighted by Ecological Society of America and can be found at: http://www.esajournals.org/loi/ecapKeywords: oceanic upwelling, eutrophication, Ulva spp, nutrients, macroalgae, species interactions, USA, eelgrass, Oregon, estuary, Zostera marinaKeywords: oceanic upwelling, eutrophication, Ulva spp, nutrients, macroalgae, species interactions, USA, eelgrass, Oregon, estuary, Zostera marin
Recommended from our members
Invasive Congeners Differ in Successional Impacts across Space and Time
Invasive species can alter the succession of ecological communities because they are
often adapted to the disturbed conditions that initiate succession. The extent to which this
occurs may depend on how widely they are distributed across environmental gradients and
how long they persist over the course of succession. We focus on plant communities of the
USA Pacific Northwest coastal dunes, where disturbance is characterized by changes in
sediment supply, and the plant community is dominated by two introduced grasses – the
long-established Ammophila arenaria and the currently invading A. breviligulata. Previous
studies showed that A. breviligulata has replaced A. arenaria and reduced community diversity.
We hypothesize that this is largely due to A. breviligulata occupying a wider distribution
across spatial environmental gradients and persisting in later-successional habitat than A.
arenaria. We used multi-decadal chronosequences and a resurvey study spanning 2 decades
to characterize distributions of both species across space and time, and investigated
how these distributions were associated with changes in the plant community. The invading
A. breviligulata persisted longer and occupied a wider spatial distribution across the dune,
and this corresponded with a reduction in plant species richness and native cover. Furthermore,
backdunes previously dominated by A. arenaria switched to being dominated by A.
breviligulata, forest, or developed land over a 23-yr period. Ammophila breviligulata likely invades
by displacing A. arenaria, and reduces plant diversity by maintaining its dominance
into later successional backdunes. Our results suggest distinct roles in succession, with A.
arenaria playing a more classically facilitative role and A. breviligulata a more inhibitory role.
Differential abilities of closely-related invasive species to persist through time and occupy
heterogeneous environments allows for distinct impacts on communities
during succession
Recommended from our members
Biophysical feedback mediates effects of invasive grasses on coastal dune shape
Vegetation at the aquatic–terrestrial interface can alter landscape features through its growth and interactions with sediment and fluids. Even similar species may impart different effects due to variation in their interactions and feedbacks with the environment. Consequently, replacement of one engineering species by another can cause significant change in the physical environment. Here we investigate the species-specific ecological mechanisms influencing the geomorphology of U.S. Pacific Northwest coastal dunes. Over the last century, this system changed from open, shifting sand dunes with sparse vegetation (including native beach grass, Elymus mollis), to densely vegetated continuous foredune ridges resulting from the introduction and subsequent invasions of two nonnative grass species (Ammophila arenaria and Ammophila breviligulata), each of which is associated with different dune shapes and sediment supply rates along the coast. Here we propose a biophysical feedback responsible for differences in dune shape, and we investigate two, non-mutually exclusive ecological mechanisms for these differences: (1) species differ in their ability to capture sand and (2) species differ in their growth habit in response to sand deposition. To investigate sand capture, we used a moveable bed wind tunnel experiment and found that increasing tiller density increased sand capture efficiency and that, under different experimental densities, the native grass had higher sand capture efficiency compared to the Ammophila congeners. However, the greater densities of nonnative grasses under field conditions suggest that they have greater potential to capture more sand overall. We used a mesocosm experiment to look at plant growth responses to sand deposition and found that, in response to increasing sand supply rates, A. arenaria produced higher-density vertical tillers (characteristic of higher sand capture efficiency), while A. breviligulata and E. mollis responded with lower-density lateral tiller growth (characteristic of lower sand capture efficiency). Combined, these experiments provide evidence for a species-specific effect on coastal dune shape. Understanding how dominant ecosystem engineers, especially nonnative ones, differ in their interactions with abiotic factors is necessary to better parameterize coastal vulnerability models and inform management practices related to both coastal protection ecosystem services and ecosystem restoration.Keywords: invasive species, ecosystem engineer, wind tunnel, sediment deposition, foredune, Elymus mollis, Ammophila arenaria, ecomorphology, ecosystem service, geomorphology, sediment transport, Ammophila breviligulat
Non-Linearity in Ecosystem Services: Temporal and Spatial Variability in Coastal Protection
Natural processes tend to vary over time and space, as well as between species. The ecosystem services these natural processes provide are therefore also highly variable. It is often assumed that ecosystem services are provided linearly (unvaryingly, at a steady rate), but natural processes are characterized by thresholds and limiting functions. In this paper, we describe the variability observed in wave attenuation provided by marshes, mangroves, seagrasses, and coral reefs and therefore also in coastal protection. We calculate the economic consequences of assuming coastal protection to be linear. We suggest that, in order to refine ecosystem-based management practices, it is essential that natural variability and cumulative effects be considered in the valuation of ecosystem services
Supporting Spartina: Interdisciplinary perspective shows Spartina as a distinct solid genus
In 2014 a DNA-based phylogenetic study confirming the paraphyly of the grass subtribe Sporobolinae proposed the creation of a large monophyletic genus Sporobolus, including (among others) species previously included in the genera Spartina, Calamovilfa, and Sporobolus. Spartina species have contributed substantially (and continue contributing) to our knowledge in multiple disciplines, including ecology, evolutionary biology, molecular biology, biogeography, experimental ecology, environmental management, restoration ecology, history, economics, and sociology. There is no rationale so compelling to subsume the name Spartina as a subgenus that could rival the striking, global iconic history and use of the name Spartina for over 200 years. We do not agree with the arguments underlying the proposal to change Spartina to Sporobolus. We understand the importance of taxonomy and of formalized nomenclature and hope that by opening this debate we will encourage positive feedback that will strengthen taxonomic decisions with an interdisciplinary perspective. We consider the strongly distinct, monophyletic clade Spartina should simply and efficiently be treated as the genus Spartina
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
- …