28 research outputs found

    Physical Processes in Star Formation

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00693-8.Star formation is a complex multi-scale phenomenon that is of significant importance for astrophysics in general. Stars and star formation are key pillars in observational astronomy from local star forming regions in the Milky Way up to high-redshift galaxies. From a theoretical perspective, star formation and feedback processes (radiation, winds, and supernovae) play a pivotal role in advancing our understanding of the physical processes at work, both individually and of their interactions. In this review we will give an overview of the main processes that are important for the understanding of star formation. We start with an observationally motivated view on star formation from a global perspective and outline the general paradigm of the life-cycle of molecular clouds, in which star formation is the key process to close the cycle. After that we focus on the thermal and chemical aspects in star forming regions, discuss turbulence and magnetic fields as well as gravitational forces. Finally, we review the most important stellar feedback mechanisms.Peer reviewedFinal Accepted Versio

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Fine mapping of the uterine leiomyoma locus on 1q43 close to a lncRNA in the RGS7-FH interval

    No full text
    Contains fulltext : 155285.pdf (Publisher’s version ) (Open Access)Mutations in fumarate hydratase (FH) on chromosome 1q43 cause a rare cancer syndrome, hereditary leiomyomatosis and renal cell cancer (HLRCC), but are rare in nonsyndromic and common uterine leiomyoma (UL) or fibroids. Studies suggested that variants in FH or in a linked gene may also predispose to UL. We re-sequenced 2.3 Mb of DNA spanning FH in 96 UL cases and controls from the multiethnic NIEHS-uterine fibroid study, and in 18 HLRCC-associated UL probands from European families then selected 221 informative SNPs for follow-up genotyping. We report promising susceptibility associations with UL peaking at rs78220092 (P=7.0x10(-5)) in the RGS7-FH interval in African Americans. In race-combined analyses and in meta-analyses (n=916), we identified promising associations with risk peaking upstream of a non-protein coding RNA (lncRNA) locus located in the RGS7-FH interval closer to RGS7, and associations with tumor size peaking in the distal phospholipase D family, member 5 (PLD5) gene at rs2654879 (P=1.7x10(-4)). We corroborated previously reported FH mutations in nine out of the 18 HLRCC-associated UL cases and identified two missense mutations in FH in only two nonsyndromic UL cases and one control. Our fine association mapping and integration of existing gene profiling data showing upregulated expression of the lncRNA and downregulation of PLD5 in fibroids, as compared to matched myometrium, suggest a potential role of this genomic region in UL pathogenesis. While the identified variations at 1q43 represent a potential risk locus for UL, future replication analyses are required to substantiate our observation

    An Attack on RSA Using LSBs of Multiples of the Prime Factors

    No full text
    Abstract. Let N = pq be an RSA modulus with a public exponent e and a private exponent d. Wiener’s famous attack on RSA with d < N 0.25 and its extension by Boneh and Durfee to d < N 0.292 show that using a small d makes RSA completely insecure. However, for larger d, it is known that RSA can be broken in polynomial time under special conditions. For example, various partial key exposure attacks on RSA and some attacks using additional information encoded in the public exponent e are efficient to factor the RSA modulus. These attacks were later improved and extended in various ways. In this paper, we present a new attack on RSA with a public exponent e satisfying an equation ed−k(N +1−ap−bq) = 1 where a q is an unknown approximation of. We b p show that RSA is insecure when certain amount of the Least Significant Bits (LSBs) of ap and bq are known. Further, we show that the existence of good approximations a q of with small a and b substantially reduces b p the requirement of LSBs of ap and bq

    Using the inhomogeneous simultaneous approximation problem for cryptographic design

    Get PDF
    Abstract. Since the introduction of the concept of provable security, there has been the steady search for suitable problems that can be used as a foundation for cryptographic schemes. Indeed, identifying such problems is a challenging task. First, it should be open and investigated for a long time to make its hardness assumption plausible. Second, it should be easy to construct hard problem instances. Third, it should allow to build cryptographic applications on top of them. Not surprisingly, only a few problems are known today that satisfy all conditions, e. g., factorization, discrete logarithm, and lattice problems. In this work, we introduce another candidate: the Inhomogeneous Simultaneous Approximation Problem (ISAP), an old problem from the field of analytic number theory that dates back to the 19th century. Although the Simultaneous Approximation Problem (SAP) is already known in cryptography, it has mainly been considered in its homogeneous instantiation for attacking schemes. We take a look at the hardness and applicability of ISAP, i. e., the inhomogeneous variant, for designing schemes. More precisely, we define a decisional problem related to ISAP, called DISAP, and show that it is NP-complete. With respect to its hardness, we review existing approaches for computing a solution and give suggestions for the efficient generation of hard instances. Regarding the applicability, we describe as a proof of concept a bit commitment scheme where the hiding property is directly reducible to DISAP. An implementation confirms its usability in principle (e. g., size of one commitment is slightly more than 6 KB and execution time is in the milliseconds)
    corecore