18 research outputs found

    The Apoptotic Effects of Methylparaben and Ultraviolet B Light on M624 Human Melanoma Cells

    Get PDF
    Methylparaben is a commonly used antimicrobial in cosmetics that has been shown to have negative effects on mammalian cells. Human melanoma M624 cells were treated with 1 and 5 mM methylparaben in the presence and absence of 25 mJ/cm2 ultraviolet B (UV-B) light. Cell proliferation assays showed that 5 mM methylparaben was toxic to M624 cells after 24 hours. Apoptotic signaling pathways were analyzed via isolation of separate cellular compartments and protein analysis via western blot. Upon 5 mM methylparaben treatment, PARP I was cleaved indicating apoptosis, which was mediated by the TNF-α receptor activated in the lipid rafts of the M624 cells. Upon 25 mJ/cm2 UV-B radiation, PARP II was activated indicating cellular damage, cytochrome c was released from the mitochondria, and caspase-3 was expressed. Upon combinatory treatment with 5 mM methylparaben and 25 mJ/cm2 UV-B, apoptosis was induced through mitochondrial release of cytochrome c, expression of caspase-3 and cleavage of PARP I, while methylparaben-induced TNF-α receptor activation and UV-B-induced PARP II activation was inhibited., demonstrating that antimicrobial methylparaben in cosmetics can cause damage to cells

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Disturbance type and species life history predict mammal responses to humans

    Full text link
    Human activity and land use change impact every landscape on Earth, driving declines in many animal species while benefiting others. Species ecological and life history traits may predict success in human- dominated landscapes such that only species with - winning- combinations of traits will persist in disturbed environments. However, this link between species traits and successful coexistence with humans remains obscured by the complexity of anthropogenic disturbances and variability among study systems. We compiled detection data for 24 mammal species from 61 populations across North America to quantify the effects of (1) the direct presence of people and (2) the human footprint (landscape modification) on mammal occurrence and activity levels. Thirty- three percent of mammal species exhibited a net negative response (i.e., reduced occurrence or activity) to increasing human presence and/or footprint across populations, whereas 58% of species were positively associated with increasing disturbance. However, apparent benefits of human presence and footprint tended to decrease or disappear at higher disturbance levels, indicative of thresholds in mammal species- capacity to tolerate disturbance or exploit human- dominated landscapes. Species ecological and life history traits were strong predictors of their responses to human footprint, with increasing footprint favoring smaller, less carnivorous, faster- reproducing species. The positive and negative effects of human presence were distributed more randomly with respect to species trait values, with apparent winners and losers across a range of body sizes and dietary guilds. Differential responses by some species to human presence and human footprint highlight the importance of considering these two forms of human disturbance separately when estimating anthropogenic impacts on wildlife. Our approach provides insights into the complex mechanisms through which human activities shape mammal communities globally, revealing the drivers of the loss of larger predators in human- modified landscapes.Human activity and land use change are driving declines in many animal species while benefiting others, but predicting which species will successfully coexist with humans remains a challenge. We compiled detection data for 24 mammal species from 61 populations across North America and showed that species life history traits were strong predictors of their responses to human footprint (landscape modification), with increasing footprint favoring smaller, less carnivorous, faster- reproducing species. Positive and negative effects of direct human presence (e.g., recreation, hunting) were distributed more randomly across species, with apparent winners and losers across a range of body sizes and dietary guilds.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/168486/1/gcb15650.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/168486/2/gcb15650_am.pd

    Disturbance type and species life history predict mammal responses to humans

    No full text
    Human activity and land use change impact every landscape on Earth, driving declines in many animal species while benefiting others. Species ecological and life history traits may predict success in human- dominated landscapes such that only species with - winning- combinations of traits will persist in disturbed environments. However, this link between species traits and successful coexistence with humans remains obscured by the complexity of anthropogenic disturbances and variability among study systems. We compiled detection data for 24 mammal species from 61 populations across North America to quantify the effects of (1) the direct presence of people and (2) the human footprint (landscape modification) on mammal occurrence and activity levels. Thirty- three percent of mammal species exhibited a net negative response (i.e., reduced occurrence or activity) to increasing human presence and/or footprint across populations, whereas 58% of species were positively associated with increasing disturbance. However, apparent benefits of human presence and footprint tended to decrease or disappear at higher disturbance levels, indicative of thresholds in mammal species- capacity to tolerate disturbance or exploit human- dominated landscapes. Species ecological and life history traits were strong predictors of their responses to human footprint, with increasing footprint favoring smaller, less carnivorous, faster- reproducing species. The positive and negative effects of human presence were distributed more randomly with respect to species trait values, with apparent winners and losers across a range of body sizes and dietary guilds. Differential responses by some species to human presence and human footprint highlight the importance of considering these two forms of human disturbance separately when estimating anthropogenic impacts on wildlife. Our approach provides insights into the complex mechanisms through which human activities shape mammal communities globally, revealing the drivers of the loss of larger predators in human- modified landscapes.Human activity and land use change are driving declines in many animal species while benefiting others, but predicting which species will successfully coexist with humans remains a challenge. We compiled detection data for 24 mammal species from 61 populations across North America and showed that species life history traits were strong predictors of their responses to human footprint (landscape modification), with increasing footprint favoring smaller, less carnivorous, faster- reproducing species. Positive and negative effects of direct human presence (e.g., recreation, hunting) were distributed more randomly across species, with apparent winners and losers across a range of body sizes and dietary guilds.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/168486/1/gcb15650.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/168486/2/gcb15650_am.pd
    corecore