13 research outputs found

    Self-assembled particulate PsaA as vaccine against Streptococcus pneumoniae infection

    Get PDF
    Streptococcus pneumoniae is a human pathogen responsible for the majority of childhood pneumonia and media otitis cases worldwide. The diversity of its capsular polysaccharides (CPS) results in more than 91 serotypes of which at least 23 are virulent. Various CPS conjugated to immunogenic carrier proteins are currently licensed and provide protection against the infection caused by the respective serotypes but not against new and emerging virulent serotypes. In this study, we considered the conserved protein antigen PsaA, the pneumococcal surface adhesin A, in order to overcome the limitations of CPS antigens. The PsaA was translationally fused to a polyhydroxybutyrate (PHB) synthase which mediated production of PsaA displayed on PHB inclusions in recombinant Escherichia coli. This suggested that the PsaA fusion to the PHB synthase did not interfere with PHB synthase activity and its ability to mediate formation of nano-sized inclusions composed of a PHB core surrounded by the PHB synthase fused to PsaA. Isolated PHB beads showed a negative surface charge. Transmission electron microscopy analysis suggested that the PsaA fusion to the PHB synthase reduced the size of PHB beads from about 500 nm to 100 nm. The integrity and antigenicity of the fusion protein attached to isolated PHB beads was confirmed by SDS-PAGE, tryptic peptide fingerprinting analysis using MALDI-TOF-MS/MS and immunoblotting using a monoclonal anti-PsaA antibody. Mice immunized with PsaA displaying PHB beads produced high and specific IgG levels dominated by IgG1 isotype. While IgG1 titer were similar between soluble and insoluble PsaA, the IgG2 titers were strongly increased upon vaccination with insoluble PsaA i.e. PsaA displayed on PHB beads. Particulate PsaA-PHB beads elicited IgG antibodies recognizing PsaA in whole cell lysates of seven different serotypes of S. pneumoniae. This study suggested that PHB beads are suitable carriers for PsaA in order to induce a significant and specific Th-2-type immune response

    Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial

    Get PDF
    Background: Short-term treatment for people with type 2 diabetes using a low dose of the selective endothelin A receptor antagonist atrasentan reduces albuminuria without causing significant sodium retention. We report the long-term effects of treatment with atrasentan on major renal outcomes. Methods: We did this double-blind, randomised, placebo-controlled trial at 689 sites in 41 countries. We enrolled adults aged 18–85 years with type 2 diabetes, estimated glomerular filtration rate (eGFR)25–75 mL/min per 1·73 m 2 of body surface area, and a urine albumin-to-creatinine ratio (UACR)of 300–5000 mg/g who had received maximum labelled or tolerated renin–angiotensin system inhibition for at least 4 weeks. Participants were given atrasentan 0·75 mg orally daily during an enrichment period before random group assignment. Those with a UACR decrease of at least 30% with no substantial fluid retention during the enrichment period (responders)were included in the double-blind treatment period. Responders were randomly assigned to receive either atrasentan 0·75 mg orally daily or placebo. All patients and investigators were masked to treatment assignment. The primary endpoint was a composite of doubling of serum creatinine (sustained for ≥30 days)or end-stage kidney disease (eGFR <15 mL/min per 1·73 m 2 sustained for ≥90 days, chronic dialysis for ≥90 days, kidney transplantation, or death from kidney failure)in the intention-to-treat population of all responders. Safety was assessed in all patients who received at least one dose of their assigned study treatment. The study is registered with ClinicalTrials.gov, number NCT01858532. Findings: Between May 17, 2013, and July 13, 2017, 11 087 patients were screened; 5117 entered the enrichment period, and 4711 completed the enrichment period. Of these, 2648 patients were responders and were randomly assigned to the atrasentan group (n=1325)or placebo group (n=1323). Median follow-up was 2·2 years (IQR 1·4–2·9). 79 (6·0%)of 1325 patients in the atrasentan group and 105 (7·9%)of 1323 in the placebo group had a primary composite renal endpoint event (hazard ratio [HR]0·65 [95% CI 0·49–0·88]; p=0·0047). Fluid retention and anaemia adverse events, which have been previously attributed to endothelin receptor antagonists, were more frequent in the atrasentan group than in the placebo group. Hospital admission for heart failure occurred in 47 (3·5%)of 1325 patients in the atrasentan group and 34 (2·6%)of 1323 patients in the placebo group (HR 1·33 [95% CI 0·85–2·07]; p=0·208). 58 (4·4%)patients in the atrasentan group and 52 (3·9%)in the placebo group died (HR 1·09 [95% CI 0·75–1·59]; p=0·65). Interpretation: Atrasentan reduced the risk of renal events in patients with diabetes and chronic kidney disease who were selected to optimise efficacy and safety. These data support a potential role for selective endothelin receptor antagonists in protecting renal function in patients with type 2 diabetes at high risk of developing end-stage kidney disease. Funding: AbbVie

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Molecular Aspects Concerning the Use of the SARS-CoV-2 Receptor Binding Domain as a Target for Preventive Vaccines

    No full text
    The development of recombinant COVID-19 vaccines has resulted from scientific progress made at an unprecedented speed during 2020. The recombinant spike glycoprotein monomer, its trimer, and its recombinant receptor-binding domain (RBD) induce a potent anti-RBD neutralizing antibody response in animals. In COVID-19 convalescent sera, there is a good correlation between the antibody response and potent neutralization. In this review, we summarize with a critical view the molecular aspects associated with the interaction of SARS-CoV-2 RBD with its receptor in human cells, the angiotensin-converting enzyme 2 (ACE2), the epitopes involved in the neutralizing activity, and the impact of virus mutations thereof. Recent trends in RBD-based vaccines are analyzed, providing detailed insights into the role of antigen display and multivalence in the immune response of vaccines under development

    Molecular Aspects concerning the Use of the SARS-CoV-2 Receptor Binding Domain as a Target for Preventive Vaccines

    No full text
    The development of recombinant COVID-19 vaccines has resulted from scientific progress made at an unprecedented speed during 2020. The recombinant spike glycoprotein monomer, its trimer, and its recombinant receptor-binding domain (RBD) induce a potent anti-RBD neutralizing antibody response in animals. In COVID-19 convalescent sera, there is a good correlation between the antibody response and potent neutralization. In this review, we summarize with a critical view the molecular aspects associated with the interaction of SARS-CoV-2 RBD with its receptor in human cells, the angiotensin-converting enzyme 2 (ACE2), the epitopes involved in the neutralizing activity, and the impact of virus mutations thereof. Recent trends in RBD-based vaccines are analyzed, providing detailed insights into the role of antigen display and multivalence in the immune response of vaccines under development

    Estandarización de un ensayo inmunoenzimático para la cuantificación de anticuerpos IgG contra el antígeno de superficie recombinante del virus de la Hepatitis B inducidos en conejos New Zealand

    No full text
    La infección por el virus de la Hepatitis B está extendida por todo el mundo. Actualmente, miles de personas mueren a causa de este virus, por lo que es una necesidad desarrollar vacunas que protejan contra este patógeno. Existen vacunas basadas en el antígeno recombinante de superficie del virus de la Hepatitis B donde la eficacia protectora de la vacunación contra el virus está directamente relacionada con la inducción de anticuerpos contra el antígeno de superficie. Por tal razón, es muy importante de contar con una técnica sensible, específica y precisa que sea capaz de detectar niveles de anticuerpos en sueros. En este trabajo se representan los resultados del proceso de estandarización de un ELISA indirecto de cuantificación que se desarrolló con sueros de conejos New Zealand inmunizados con la vacuna comercial Heberpenta-L y una vacuna experimental combinada. En los cuales se determinó la concentración óptima de recubrimiento, el intervalo y linealidad de la curva, la precisión intra e interensayo, la especificidad y el límite de detección. La curva de calibración, generada con un estándar interno, presentó un buen ajuste lineal y un intervalo entre las diluciones 1/200 a 1/12800. Los coeficientes de variación en los ensayos de precisión estuvieron en los intervalos establecidos para cada uno (≤10%, ≤20% respectivamente). El ensayo presentó una especificidad óptima y se determinó el valor de corte que fue de 18,086 UA/mL. Estos resultados avalan el empleo de esta técnica en los laboratorios del Instituto Finlay de vacunas para la evaluación preclínica de nuevos candidatos vacunales combinados que protejan contra la Hepatitis B

    A COVID-19 vaccine candidate composed of the SARS-CoV-2 RBD dimer and: Neisseria meningitidis outer membrane vesicles

    No full text
    SARS-CoV-2 infection is mediated by the interaction of the spike glycoprotein trimer via its receptor-binding domain (RBD) with the host's cellular receptor. Vaccines seek to block this interaction by eliciting neutralizing antibodies, most of which are directed toward the RBD. Many protein subunit vaccines require powerful adjuvants to generate a potent antibody response. Here, we report on the use of a SARS-CoV-2 dimeric recombinant RBD combined with Neisseria meningitidis outer membrane vesicles (OMVs), adsorbed on alum, as a promising COVID-19 vaccine candidate. This formulation induces a potent and neutralizing immune response in laboratory animals, which is higher than that of the dimeric RBD alone adsorbed on alum. Sera of people vaccinated with this vaccine candidate, named Soberana01, show a high inhibition level of the RBD-ACE2 interaction using RBD mutants corresponding to SARS-CoV-2 variants of concern and wild-type expressed using the phage display technology. To our knowledge, this is the first time that the immunostimulation effect of N. meningitidis OMVs is evaluated in vaccine candidates against SARS-CoV-2

    SARS-CoV-2 RBD-Tetanus Toxoid Conjugate Vaccine Induces a Strong Neutralizing Immunity in Preclinical Studies

    No full text
    International audienceControlling the global COVID-19 pandemic depends, among other measures, on developing preventive vaccines at an unprecedented pace. Vaccines approved for use and those in development intend to elicit neutralizing antibodies to block viral sites binding to the host's cellular receptors. Virus infection is mediated by the spike glycoprotein trimer on the virion surface via its receptor binding domain (RBD). Antibody response to this domain is an important outcome of immunization and correlates well with viral neutralization. Here, we show that macromolecular constructs with recombinant RBD conjugated to tetanus toxoid (TT) induce a potent immune response in laboratory animals. Some advantages of immunization with RBD-TT conjugates include a predominant IgG immune response due to affinity maturation and long-term specific B-memory cells. These result demonstrate the potential of the conjugate COVID-19 vaccine candidates and enable their advance to clinical evaluation under the name SOBERANA02, paving the way for other antiviral conjugate vaccines
    corecore