318 research outputs found
The effect of two-temperature post-shock accretion flow on the linear polarization pulse in magnetic cataclysmic variables
The temperatures of electrons and ions in the post-shock accretion region of
a magnetic cataclysmic variable (mCV) will be equal at sufficiently high mass
flow rates or for sufficiently weak magnetic fields. At lower mass flow rates
or in stronger magnetic fields, efficient cyclotron cooling will cool the
electrons faster than the electrons can cool the ions and a two-temperature
flow will result. Here we investigate the differences in polarized radiation
expected from mCV post-shock accretion columns modeled with one- and
two-temperature hydrodynamics. In an mCV model with one accretion region, a
magnetic field >~30 MG and a specific mass flow rate of ~0.5 g/cm/cm/s, along
with a relatively generic geometric orientation of the system, we find that in
the ultraviolet either a single linear polarization pulse per binary orbit or
two pulses per binary orbit can be expected, depending on the accretion column
hydrodynamic structure (one- or two-temperature) modeled. Under conditions
where the physical flow is two-temperature, one pulse per orbit is predicted
from a single accretion region where a one-temperature model predicts two
pulses. The intensity light curves show similar pulse behavior but there is
very little difference between the circular polarization predictions of one-
and two-temperature models. Such discrepancies indicate that it is important to
model some aspect of two-temperature flow in indirect imaging procedures, like
Stokes imaging, especially at the edges of extended accretion regions, were the
specific mass flow is low, and especially for ultraviolet data.Comment: Accepted for publication in Astrophysics & Space Scienc
Recent advance in high manufacturing readiness level and high temperature CMOS mixed-signal integrated circuits on silicon carbide
A high manufacturing readiness level silicon carbide (SiC) CMOS technology is presented. The unique process flow enables the monolithic integration of pMOS and nMOS transistors with passive circuit elements capable of operation at temperatures of 300 °C and beyond. Critical to this functionality is the behaviour of the gate dielectric and data for high temperature capacitanceâvoltage measurements are reported for SiO2/4H-SiC (n and p type) MOS structures. In addition, a summary of the long term reliability for a range of structures including contact chains to both n-type and p-type SiC, as well as simple logic circuits is presented, showing function after 2000 h at 300 °C. Circuit data is also presented for the performance of digital logic devices, a 4 to 1 analogue multiplexer and a configurable timer operating over a wide temperature range. A high temperature micro-oven system has been utilised to enable the high temperature testing and stressing of units assembled in ceramic dual in line packages, including a high temperature small form-factor SiC based bridge leg power module prototype, operated for over 1000 h at 300 °C. The data presented show that SiC CMOS is a key enabling technology in high temperature integrated circuit design. In particular it provides the ability to realise sensor interface circuits capable of operating above 300 °C, accommodate shifts in key parameters enabling deployment in applications including automotive, aerospace and deep well drilling
Self-consistent model of ultracold atomic collisions and Feshbach resonances in tight harmonic traps
We consider the problem of cold atomic collisions in tight traps, where the
absolute scattering length may be larger than the trap size. As long as the
size of the trap ground state is larger than a characteristic length of the van
der Waals potential, the energy eigenvalues can be computed self-consistently
from the scattering amplitude for untrapped atoms. By comparing with the exact
numerical eigenvalues of the trapping plus interatomic potentials, we verify
that our model gives accurate eigenvalues up to milliKelvin energies for single
channel s-wave scattering of Na atoms in an isotropic harmonic trap,
even when outside the Wigner threshold regime. Our model works also for
multi-channel scattering, where the scattering length can be made large due to
a magnetically tunable Feshbach resonance.Comment: 7 pages, 4 figures (PostScript), submitted to Physical Review
Thermal fluctuations of gauge fields and first order phase transitions in color superconductivity
We study the effects of thermal fluctuations of gluons and the diquark
pairing field on the superconducting-to-normal state phase transition in a
three-flavor color superconductor, using the Ginzburg-Landau free energy. At
high baryon densities, where the system is a type I superconductor, gluonic
fluctuations, which dominate over diquark fluctuations, induce a cubic term in
the Ginzburg-Landau free energy, as well as large corrections to quadratic and
quartic terms of the order parameter. The cubic term leads to a relatively
strong first order transition, in contrast with the very weak first order
transitions in metallic type I superconductors. The strength of the first order
transition decreases with increasing baryon density. In addition gluonic
fluctuations lower the critical temperature of the first order transition. We
derive explicit formulas for the critical temperature and the discontinuity of
the order parameter at the critical point. The validity of the first order
transition obtained in the one-loop approximation is also examined by
estimating the size of the critical region.Comment: 12 pages, 4 figures, final version published in Phys. Rev.
Completion of Advance Directives: Do Social Work Preadmission Interviews Make a Difference?
Objectives: This study tests the efficacy of a preadmission, educational interview on advance directives, in this case, health care proxies (HCPs) offered to elective, orthopedic patients. Method: Using a quasi-experimental design, participants (n = 54) are assigned to either treatment group (who received the educational interview, conducted by a social worker, over and above the federally mandated written information on HCPs) or comparison group (who received the written information only). Results: Logistic regression analysis indicates there is a statistically significantly higher probability that a patient would sign an HCP if assigned to the treatment group than if assigned to the comparison condition. Conclusion: Benefits of educating patients about HCPs as part of routine social work practice are outlined
Hybrid Genetic Bees Algorithm applied to Single Machine Scheduling with Earliness and Tardiness Penalties
This paper presents a hybrid Genetic-Bees Algorithm based optimised solution for the single machine scheduling problem. The enhancement of the Bees Algorithm (BA) is conducted using the Genetic Algorithm's (GA's) operators during the global search stage. The proposed enhancement aims to increase the global search capability of the BA gradually with new additions. Although the BA has very successful implementations on various type of optimisation problems, it has found that the algorithm suffers from weak global search ability which increases the computational complexities on NP-hard type optimisation problems e.g. combinatorial/permutational type optimisation problems. This weakness occurs due to using a simple global random search operation during the search process. To reinforce the global search process in the BA, the proposed enhancement is utilised to increase exploration capability by expanding the number of fittest solutions through the genetical variations of promising solutions. The hybridisation process is realised by including two strategies into the basic BA, named as Ăą\u80\u9creinforced global searchĂą\u80\u9d and Ăą\u80\u9cjumping functionĂą\u80\u9d strategies. The reinforced global search strategy is the first stage of the hybridisation process and contains the mutation operator of the GA. The second strategy, jumping function strategy, consists of four GA operators as single point crossover, multipoint crossover, mutation and randomisation. To demonstrate the strength of the proposed solution, several experiments were carried out on 280 well-known single machine benchmark instances, and the results are presented by comparing to other well-known heuristic algorithms. According to the experiments, the proposed enhancements provides better capability to basic BA to jump from local minima, and GBA performed better compared to BA in terms of convergence and the quality of results. The convergence time reduced about 60% with about 30% better results for highly constrained jobs
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in âs = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fbâ1 of protonâproton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC
Measurements of inclusive jet suppression in heavy ion collisions at the LHC
provide direct sensitivity to the physics of jet quenching. In a sample of
lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated
luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with
a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the
transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the
anti-kt algorithm with values for the distance parameter that determines the
nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of
the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp.
Jet production is found to be suppressed by approximately a factor of two in
the 10% most central collisions relative to peripheral collisions. Rcp varies
smoothly with centrality as characterized by the number of participating
nucleons. The observed suppression is only weakly dependent on jet radius and
transverse momentum. These results provide the first direct measurement of
inclusive jet suppression in heavy ion collisions and complement previous
measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables,
submitted to Physics Letters B. All figures including auxiliary figures are
available at
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
- âŠ