

Hybrid Genetic Bees Algorithm applied
to Single Machine Scheduling with
Earliness and Tardiness Penalties

Yuce, B, Fruggiero, F, Packianather, MS, Pham, DT,
Mastrocinque, E, Lambiase, A & Fera, M

Author post-print (accepted) deposited by Coventry University’s Repository

Original citation & hyperlink:

Yuce, B, Fruggiero, F, Packianather, MS, Pham, DT, Mastrocinque, E, Lambiase, A &
Fera, M 2017, 'Hybrid Genetic Bees Algorithm applied to Single Machine Scheduling

with Earliness and Tardiness Penalties' Computers & Industrial Engineering, vol 113

pp. 842-858
https://dx.doi.org/10.1016/j.cie.2017.07.018

DOI 10.1016/j.cie.2017.07.018
ISSN 0360-8352

Publisher: Elsevier

NOTICE: this is the author’s version of a work that was accepted for publication in
Computers & Industrial Engineering. Changes resulting from the publishing
process, such as peer review, editing, corrections, structural formatting, and other
quality control mechanisms may not be reflected in this document. Changes may
have been made to this work since it was submitted for publication. A definitive

version was subsequently published in Computers & Industrial Engineering, [113
 (2017)] DOI: 10.1016/j.cie.2017.07.018

© 2017, Elsevier. Licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

This document is the author’s post-print version, incorporating any revisions agreed during
the peer-review process. Some differences between the published version and this version
may remain and you are advised to consult the published version if you wish to cite from
it.

https://dx.doi.org/10.1016/j.cie.2017.07.018
http://creativecommons.org/licenses/by-nc-nd/4.0/

Accepted Manuscript

Hybrid Genetic Bees Algorithm applied to Single Machine Scheduling with
Earliness and Tardiness Penalties

B. Yuce, F. Fruggiero, M.S. Packianather, D.T. Pham, E. Mastrocinque, A.
Lambiase, M. Fera

PII: S0360-8352(17)30320-0
DOI: http://dx.doi.org/10.1016/j.cie.2017.07.018
Reference: CAIE 4825

To appear in: Computers & Industrial Engineering

Received Date: 2 June 2016
Revised Date: 14 July 2017
Accepted Date: 15 July 2017

Please cite this article as: Yuce, B., Fruggiero, F., Packianather, M.S., Pham, D.T., Mastrocinque, E., Lambiase, A.,
Fera, M., Hybrid Genetic Bees Algorithm applied to Single Machine Scheduling with Earliness and Tardiness
Penalties, Computers & Industrial Engineering (2017), doi: http://dx.doi.org/10.1016/j.cie.2017.07.018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.cie.2017.07.018
http://dx.doi.org/http://dx.doi.org/10.1016/j.cie.2017.07.018

Hybrid Genetic Bees Algorithm applied to Single Machine Scheduling with Earliness

and Tardiness Penalties

B. Yuce
1*

, F. Fruggiero
2
, M.S. Packianather

3
, D.T. Pham

4
, E. Mastrocinque

5
 A. Lambiase

6
 and

M. Fera
7

1
Innovation Centre, College of Engineering, Mathematics and Physical Sciences, Streatham Campus, University of

Exeter, EX4 4QJ, Exeter, UK,
2
 School of Engineering, University of Basilicata, Via Ateneo Lucano 10, 85100 Potenza, Italy,

3
High Value Manufacturing Group, School of Engineering, Cardiff University, CF24 3AA Cardiff, UK,

4
School of Mechanical Engineering, University of Birmingham, B15 2TT, Birmingham, UK

5
Faculty of Engineering, Environment and Computing, Coventry University, Priory Street, CV1 5FB, Coventry, UK

6
 Department of Industrial Engineering, University of Salerno, Fisciano, Italy,

7
 Dept. of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa, Italy,

*Correspondent Author email address: b.yuce@exeter.ac.uk

ABSTRACT This paper presents a hybrid Genetic-Bees Algorithm based optimised solution for the

single machine scheduling problem. The enhancement of the Bees Algorithm (BA) is conducted using

the Genetic Algorithm’s (GA’s) operators during the global search stage. The proposed enhancement

aims to increase the global search capability of the BA gradually with new additions. Although the

BA has very successful implementations on various type of optimisation problems, it has found that

the algorithm suffers from weak global search ability which increases the computational complexities

on NP-hard type optimisation problems e.g. combinatorial/permutational type optimisation problems.

This weakness occurs due to using a simple global random search operation during the search process.

To reinforce the global search process in the BA, the proposed enhancement is utilised to increase

exploration capability by expanding the number of fittest solutions through the genetical variations of

promising solutions. The hybridisation process is realised by including two strategies into the basic

BA, named as “reinforced global search” and “jumping function” strategies. The reinforced global

search strategy is the first stage of the hybridisation process and contains the mutation operator of the

GA. The second strategy, jumping function strategy, consists of four GA operators as single point

crossover, multipoint crossover, mutation and randomisation. To demonstrate the strength of the

proposed solution, several experiments were carried out on 280 well-known single machine

benchmark instances, and the results are presented by comparing to other well-known heuristic

algorithms. According to the experiments, the proposed enhancements provides better capability to

basic BA to jump from local minima, and GBA performed better compared to BA in terms of

convergence and the quality of results. The convergence time reduced about 60% with about 30%

better results for highly constrained jobs.

KEYWORDS: Swarm-Based Optimisation; Bees Algorithm (BA); Genetic Bees Algorithm (GBA);

Single Machine Scheduling Problem (SMSP).

1. INTRODUCTION

The recent technological developments in production and manufacturing systems have created a

substantial opportunity to increase the production and manufacturing capability of the organisations in

order to meet customers’ expectations like the desired product quality and the delivery date. In

literature, the most popular production and manufacturing systems are found as lean manufacturing,

flexible manufacturing system, fit manufacturing and just in time (JIT) (Belgran et al., 2010).

Although these manufacturing systems comprise with robust and well-defined philosophies, in

practice, unexpected problems like the early or late product delivery times generates a negative

influence on the organisations and their total manufacturing costs. Therefore, several strategies have

been proposed in literature to increase the productivity in manufacturing systems including

technology strategy, location strategy, strategy of validity integration and capacity strategy

(Dombrowski et al., 2016).

A well-defined production planning methodology provides a great opportunity to utilise effective

manufacturing strategies, which involves the information about machining operations, their sequence,

tools, setup requirements and technological parameters (Yanushevsky, 1992). One of the main

difficulty to utilise an effective production planning is to determine the uncertainty of the demand,

hence, an effective master production schedule (MPS) can be achieved (Gessner, 1986). However, the

MPS can be realised with optimised schedules, but the scheduling optimisations are classified as the

NP-hard type problems (Pinedo, 2012), which aims to optimise the operations’ schedules, where

these schedules mostly suffer from the bottlenecks due to machine capacity and jobs’ completion

times. In literature, the machine scheduling and the determination of the optimum jobs’ orders have

been tackled since 1980s.

In Single Machine Earliness/Tardiness Problem (SMETP), performance is measured by the

minimization of the weighted sum of earliness and tardiness penalties of jobs. In literature, Genetic

Algorithm is utilised individually to tackle this problem, however, random nature of the algorithm is

one of the drawbacks to determine the optimum solution for the scheduling problem (2012). Hence,

they have suggested to increase the efficiency of the algorithm by combining other algorithms,

especially to increase the local search property. In addition, Pham et al., (2007) presented a single

machine scheduling solution using the Bees Algorithm. However, the proposed solution suffered from

being stuck in nonpromising patches which required some perturbations to avoid this weakness.

Hence, this paper presents an enhancement of the Bees algorithm by combining genetic operators in

order to solve the SMET problem.

This paper addresses the single machine scheduling of a set of jobs with a common due date and

the objective of minimizing the job’s total earliness and tardiness. The proposed meta-heuristic aims

to combine the Genetic Algorithms’ exploration performances (Goldberg, 1989) with the exploitation

capacity of the Bees Algorithm (Pham et al., 2005). This paper is organized as follows: section two

presents the detailed background information and literature on the single machine scheduling problem

and applied heuristics solutions; section three illustrates modelling of the single machine scheduling

problem. In section four, the Bees algorithm and its enhancements with the genetic operators are

presented, section five presents the experimental analysis and results about the proposed technique

including the tuning phase of the GBA and its application on benchmarks problems. Performances

were evaluated and compared to the basic Bees approach and other well-known heuristics, by the

minimization of the weighted sum of earliness and tardiness penalties. Discussion about the role of

algorithm parameters in terms of efficacy (i.e., objective function) and effectiveness (i.e.,

computational time) is reported. Finally, the conclusion and detailed discussions are included in

section six.

2. BACKGROUND

The problem of considering optimal due date assignment together with the definition of an optimal

scheduling policy was firstly considered by Seidmann et al., (1981) and Panwalkar et al., (1982) using

analytical approaches. Jaegyun, (1999) stated that an ideal schedule is the one where the all jobs finish

on their assigned due date. However, it is not an easy task to determine the correct order to assign the

jobs due the complex nature of the problem. Considering the job scheduling problem within a

completion time frame, the scheduling problems classified as one of the NP-hard type problems (Lee

et al., 1991). Moreover, there is also no a certain algorithm to address all types of scheduling problem

however researchers are trying to address different types of problems with different search algorithms

to find an optimum solution and increase the search quality such as, Cheng, (1984) demonstrated the

anticipation for the jobs’ completion under certain production conditions and definition of an optimal

due date assignments for each job. Single machine scheduling problem, considering lateness

performance under constrained due date, was firstly discussed by Gupta and Kyparisis, (1987).

Complexity of this problem was studied in the work of Lauff and Werner, (2004), and, the aim was to

minimize the sum of the absolute deviations of the completion times from the due. Open and job shop

systems where compared with two machines flow shop environment in the case of restrictive and non-

restrictive due date and it is proven that flow shop environment is NP-hard in the strong sense. In

addition, Bagchi et al., (1986) was asserted that the value of the due date might influence the

computational complexity. The optimal objective function value of a certain problem cannot increase

by increasing the due date while keeping other parameters as constant. Therefore, there is a time-

period in which the products should be completed on time and then the customers’ deliveries are

arranged. In general, the restricted common due date types problems are much more difficult to solve

compared to non-restricted types (Baker and Scudder, 1990). Further, the optimal penalty cost cannot

decrease with the increase in the common due date in the single machine scheduling (Webster, 1997).

For the case of single machine scheduling under due date penalties, Kanet, (1981) was the first to

assume a problem in which penalties occur when a job is completed early or late to restrictive

assumptions on the due dates and in penalty functions for jobs.

In addition to the above, tardiness penalties due to delivery after a contractually arranged due date,

consider the loss of customers’ goodwill and damage reputation as well as delay of payment and

shortages which entails extra costs including late charges (Fisher and Jaikumar, 1978). On the other

hand, completing a job before the due date increases the cost or probability of related cost due to

insurance, inventory carrying, holding, theft, perishing and loss of product quality, bounded capital

(Webster, 1997). Moreover, the increasing adoption of the JIT approach in industries has made due

date backward assignment an active area of scheduling research (Li et al., 2006). Inventory

management such as JIT concepts is mainly dependent by the certainty of production capacity and

lead time. In JIT systems, jobs have to be completed neither too early nor too late (Monden, 1983).

This leads to the scheduling problems with both earliness and tardiness penalties.

Single machine scheduling problem occurs every time a closed continuous flow is arranged or

whatever bottlenecks characterize the overall performances of the considered system. Thus, meeting

common due dates has always been one of the most important objectives in scheduling and supply

chain management. At the same time, the common due date makes sense whenever it is not required

detailed control for jobs or better when all goods and services are comparable in terms of resources

allocation (Cheng, 1988). In addition, common due date allows managers to reduce the production

cost and control the organisation financial status by assigning the most appropriate jobs in the

manufacturing operations (Gordon et al., 2002). However, the selection of the appropriate task is

highly complicated process which requires advanced solution to be implemented. Moreover, besides

the delivery of tardy services, the main issue to be taken into account is the cost discount that can be

derived whenever a warehouse does not exist and products do not have obsolescence or extra costs.

The problem of common due date for single machine scheduling definition was firstly analysed by

Panwalker et al., (1982). Common due date can be either externally defined and imposed by the

market (Baker and Scudder, 1990), or internally defined as a time line manager wants to achieve.

In literature, several pieces of works have been conducted on the solution of the SMETP problem

(e.g., Panwalkar, et al., (1982); Cheng, (1984); Janiak, (1991); Cheng et al., (2004); Mosheiov and

Yovel, (2006); Lin et al., (2007a); Nearchou, (2008); Gordon and Strusevich, (2009); Wang and

Wang, (2010); Li et al., (2011); Nearchou, (2011); and Yang et al., (2014)).

Benchmarks for scheduling with common due date were presented in the paper of Biskup and

Feldmann (2001). They generated benchmark data set for SMETP which then became popular among

the researchers and solved 280 instances using two dedicated heuristics for identifying the upper

bounds on the optimal function values. Instances and values are currently available in order to test

performances of newly heuristics. These benchmarks are widely used to test performances in SMETP

(Feldmann and Biskup, (2003); Chen and Sheen, (2007); Nearchou (2008); Lin et al., (2007b); and

Nearchou, (2011). Further, the benchmark problem generation process for single machine early/tardy

scheduling is proposed by Abdul-Razaq and Potts, (1988); Li, (1997); and Liaw, (1999), and widely

utilised in the heuristics as stated in Valente and Alves, (2005); Valente et al., (2006); Lin et al.,

(2007a); Valente (2008); Valente and Schaller, (2012); and Sundar and Singh, (2012). The

performance of proposed approaches in the last two papers are not presented with exact solutions

values. However, there is a relative comparison between heuristics results and upper boundaries.

Due to the complexity of SMETP local search, meta-heuristic approaches are mainly introduced as

the solution methods. The total tardiness/earliness problem was first studied by Emmons in late sixties

(Emmons, 1969). Until the early 70s, most of the studies presented in this field were mainly practice

oriented, and aiming at designing fast enumerative algorithm to find an optimal schedule. Pseudo

polynomial time algorithm were proposed by Lawler, (1979) in approximation scheme.

Adbul-Razaq and Potts, (1988) developed a branch-and-bound algorithm that employs lower

bounds by the dynamic programming state space relaxation technique. Satisfactory results were

obtained in a large number of jobs (up to 25 jobs) with lower processing times. Moreover, an efficient

heuristic based on branch-and-bound algorithm with decomposition of problem into two sub-problems

and two efficient multiplier adjustments are proposed in the work of Li, (1997) for up to 50 jobs.

Moreover, a combination of priority dispatching rules with local improvements is used for eliminating

unpromising nodes in the branch-and-bound algorithm of Liaw, (1999). Valente and Alves, (2005)

demonstrated the influence of initial sequence on lower bound as stated in Li, (1997); and Liaw,

(1999). A survey regarding algorithms and approaches for SMETP were reported in the works of

Crauwels et al., (1997). Hybrid constructive strategies for SMETP are performed in Hino et al.,

(2005). The role of almost all dispatching rules for the optimal SMTP (earliness is not included)

issues was stated in Valente and Schaller, (2012). Heuristics approaches to solve SMETP have been

applied by Yeung et al., (2001). In particular, they developed a branch a bound algorithm to

minimize, under common due windows, earliness and tardiness penalties. Three meta- heuristics

approaches for stable scheduling on a single machine based on Branch & Bound and Genetic

operators were reported in the work of Ballestin and Leus, (2008) based on the start time deviation

between planned time and actual time. Beams search heuristics with recovery procedures is used in

the work of Valente, (2008) with optimal performance for small and medium SMETP instances.

According to experiments of Valente, (2008), an excessive computational time was required for

medium and large (more than 75 jobs) instances, when the pre-evaluation in beam was included based

on dispatching rules. A filtered beam search method for near optimal sequences of jobs was proposed

by Ow and Morton, (1989). Another study using the genetic operators in non-dominated sorting

algorithm combined with quantum bit representation was proposed by Liu et al., (2013); and Jolai et

al., (2007). A combination of GA with 14 local search and initialization procedures were developed

and tested on the randomly generated instances in Valente et al., (2006). They demonstrated that,

behind the quality of results, the combination of fitness evaluation and GA was greatly accelerating

the convergence, and reduced number of iterations and computational time at nearby optimal schedule

compared to heuristics based on dispatching and local searches. Hybrid permutation-coded

evolutionary approach - confirming the requirement of combining steady state genetic schedules with

adjacent pairwise interchange procedure – demonstrates the robustness of genetics and the average

gain in computational effort by comparing the fitness evaluation strategies inside GA by Singh,

(2010). Another method used for SMETP is memetic approach, presented by Franca et al., (2001).

Greedy Randomized Adaptive Search Procedure (GRASP) was used in Norgueira et al., (2014).

Heuristics based on mathematical programming was proposed by Della Croce et al., (2014), to obtain

better performances for the large-scale problems. A combination of local search heuristics, using

dispatching and hill climbing and simulated annealing, with evolutionary algorithm was proposed by

M’Hallah, (2007), where it was clear the role of hybridization as to improve the solution quality at a

reasonable cost in terms of run time. Another hybrid approach was presented by Sundar and Singh,

(2012). They proposed a local search approach combined with Artificial Bees Colony (ABC). The

results are reported based on the optimum solutions presented by Valente et al., (2006). The authors

demonstrated the superior performances of ABC on quality of solution and convergence rate on the

instances with 50, 75 and 100 jobs, compared to GA results. However, the convergence performance

was slower for the instances greater than 250 jobs. Another approach is based on Tabu Search and

Simulated Annealing and Neighbourhood Search, proposed by Almeida and Centeno, (1998), which

was utilised the random generated SMTEP instances. Finally, complete survey of heuristic

methodologies for solving SMETP was reported in the work of Gupta and Sen, (1983); Sen et al.,

(1996); Chen, (1996); Su and Chang, (1998); Gordon et al., (2002); and Schaller, (2007).

This paper demonstrates the performances of an enhanced hybrid version of the Bees Algorithm,

called Genetic Bees Algorithm (GBA). Since the basic Bees Algorithm may have limitation to

converge the optimum solution in the desired time scale by Yuce et al., (2014a). The genetic

algorithm operators like crossover and mutation operators are included in order to increase

convergence rate by increasing the ability of the global search, the details of the proposed algorithm

are defined in section 4.2. Similar approach is proposed by Ming et al., (2011) to increase the

efficiency of the Bee Colony Algorithm, they have utilised GA to increase the local search capability

of the Bee colony algorithm. However, the main weakness of the BA is the global search stage,

therefore, this paper focuses on the enhancements of the global search stage. The validation and

performances of the proposed approach - because of the easily access to the database and optimum

solutions- are evaluated in the test data, presented by Biskup and Feldman, (2001). However, there are

still other data sets available to be utilised in the literature presented by Valente et al., (2006), Singh

(2010); and Sundar and Singh, (2012). Notwithstanding, results will be benchmarked with other meta-

heuristics from the major class of pure and hybrid approaches. It has been assumed that restrictive and

relaxed common due date exists. For each job, individual earliness and tardiness completion time

penalties are given in advance. Validation of the proposed meta-heuristic is presented in terms of

computational time, effort and quality of solutions by means of the upper bound as used by Feldman

& Biskup, (2003); Hino et al., (2005); and as reported in the GA+ greedy local search and SA +

greedy local search of Lin et al., (2007a).

3. THE SINGLE MACHINE SCHEDULING PROBLEM

The optimal allocation of scarce resources to certain activities is the objective of the scheduling.

Scheduling problems become sequence whenever constraints regarding priorities are not included

(Carlier, 1982). A single machine scheduling problem is a well-studied optimisation problem where a

set of n-jobs with given deterministic processing times Ti and due date, have to be processed on a

machine according to some constraints. The goal is to find a schedule for the n-jobs which minimizes

the sum of all the penalties occurring due to the constraints. This is a challenging optimisation

problem and therefore it is chosen to test the performance of the proposed GBA.

In the SMETP, resources are commonly referenced as machines Mk that can perform at most one

activity - one job Ji i.e., an open or close sequence of tasks i with time Tijk (i.e., the time T of a task i

as part of the job j which requires the resource k) - at any time t.

Ubiquity of task is not enabled. All the information that defines a problem instance is known in

advance. This characterises a deterministic scheduling as part of the combinatorial optimisation. In the

following part, it is presented the 3-parameter classification introduced by Graham et al., (1979).

Then, SMETP is formally classified as n/1//ET (French, 1982).

Let: J= {J1, J2, …., Jj-1, Jj, Jj+1, …, Jn} the set of the n jobs existing inside the system to be

processed without interruption on a single machine Mk (i.e., k here is equal to 1) that can handle only

one job at a time. Each job Jj is available at time zero, requires a positive process time Tjk and ideally

must be completed exactly on a specific constant due date D proportionally to the amount of �� =

	∑ ����
�	
 and common for all jobs.

Penalties occur every time, the job j is completed before or early the fixed due date D.

The common due date D on machine k (i.e., Dk) is calculated by:

	�� = 	�
����∑ ����
�	
 	× ℎ� (1)

where round[X] gives the biggest integer, which is smaller than or equal to X; parameter h is used to

calculate more or less restrictive common due dates.

 An early Ekj=max (0, Dk-Tjk) or a tardy Rkj=max (0, Tjk-Dk) occurs if the job j is not completed

exactly on the specific assigned Dk. The possibility to accumulate Rkj – whatever its amount is

preferable to Ejk because of its excessive penalties - in non-restrictive cases is allowed in order to get

optimality. The objective is therefore to find a processing order for the n jobs that minimises the

following objective:

��� = ∑ ������� +��������
�	
 (2)

where αjk and βjk are respectively the earliness and tardiness non-negative penalties for the job j as

processed on machine k and they constitute the deterministic input for the benchmarks. Thus, an

optimal solution to unrestricted SMETP (h ≥ 0.4) may exist if no idle time in scheduling occurs and

the starting time of the first job could not start at the time zero (Cheng and Kahlbacher, 1991). Close

jobs are necessary but not a sufficient condition for the optimisation. Here, the complexity is related

more to the arbitrary starting date than to the close sequence of jobs. The restrictive form of SMETP

is also much more complex than the unrestricted form, given the NP-hard nature of the problem (i.e.,

excluding the optimum schedule, a priori when the n>20) (Du and Leung, 1990). In order to generate

data tests, a set of n jobs with deterministic processing times Tjk and a common due date Dk are

given. In this study, seven benchmark data files are utilised with different job numbers, n, which

are equal to 10, 20, 50, 100, 200, 500, 1000 jobs, and under different restricted (h = 0.2 and h = 0.4)

and unrestricted (h = 0.6 and h = 0.8) constraints with due date (Dk) on one machine (k=1). Each job

should be processed on one machine, further, the individual earliness Ej and tardiness Tj penalties are

given for each job, which will be included in the objective function, if a job is finished before or after

the common due date D1.

4. THE ENHANCEMENT OF THE BEES ALGORITHM WITH GENETIC OPERATORS

4.1 THE BEES ALGORITHM

A colony of honey bees exploit, in multiple directions simultaneously, food sources in the form of

1
 Common due date scheduling, OR-Library, Available at:

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/schinfo.html [Accessed on 2nd April 2014].

antera with plentiful amounts of nectar or pollen. They can conduct this foraging exploitation up to 11

kilometres far from their hives on multiple directions (Gould, 1975). Flower patches are marked based

on a virtual stigmergic approach – sites with higher nectar content should be visited by more bees

(Crina and Ajith, 2006). The foraging strategy starts with scout bees, which represent a percentage of

the beehive population. They wave randomly from one patch to another. Returning at the hive, those

scout bees deposit their nectar or polled and start a recruiting mechanism called waggle dance (Von

Frisch, 2014). Bees, stirring up for discovery, flutter from one to one hundred circuits with a waving

and returning phase.

The waving phase contains information about direction and distance of flower patches. The

waggle dance is used as a guide or a map to evaluate merits of explored different patches and to

exploit better solutions. After waggle dancing on the dance floor, the dancer (i.e., the scout bee) goes

back to the flower patch with follower bees that are waiting inside the hive. A squadron moves

forward into the patches. More follower bees are sent to more promising patches, while harvest paths

are still explored but not in the long term. This behaviour represents a swarm intelligent approach

(Yuce et al., 2013), which allows the colony to gather food quickly and efficiently with a recursive

recruiting mechanism (Seeley, 2009).

The Bees Algorithm approach is inspired to such a natural communication mechanism. The Bees

Algorithm (BA) is a type of Swarm Based Optimisation Technique (SBOT) mimicking the foraging

behaviour of honey bees (Pham et al., 2005; Fera et al., 2013; and Yuce et al., 2014a). The

algorithm conducts a global and a local search process to determine the global optimum solution.

According to literature, most of the optimisation algorithms are not capable to utilise both of these

search process, they utilise either a local search or a global search individually. Hence, the Bees

Algorithm can search the entire solution space randomly and focuses on the promising regions. The

global search is conducted by scout bees which fly out from the hive in search of potential flower

patches randomly. The returning scout bees communicate the following information to the recruit

worker bees by means of the waggle dance. Information includes the direction of the source, the

distance of the source from the hive and the quality of the food source (Gould 1975; and Von Frisch,

2014).

This is indicated by the orientation of the bee with respect to the sun, the duration of the dance,

and the frequency of the waggles in the dance and buzzing respectively (Huang, 2008). This will

influence the number of recruited worker bees which will carry out a local search. Over time, old

patches which have been exploited fully by worker bees will be abandoned and new patches

explored by scout bees for further exploitation. This process continues in an iterative manner until a

stopping criteria is met. The process will become random if it is dominated by global search and, on

the other hand, run the risk of getting stuck in a local optimum if the focus is on local or

neighbourhood search. Hence a good optimisation algorithm must conduct a thorough local search

while maintaining the global search perspective. The BA due to its inherent nature, is expected to get

stuck in local optima and in order to overcome this problem the proposed a hybrid Genetic Bees

Algorithm (GBA) relies on two extra components to modify or evolve the search similar to that of

Genetic Operators. These components are the Reinforced Global Search frame and a Jumping

Function.

The standard Bees Algorithm first developed by Pham et al., in 2005 requires a set of parameters

as reported in table 1: number of scout bees (ns), number of elite sites selected out of ns visited sites

(ne), number of best sites out of ne selected sites (nb), number of bees recruited for the best nb sites

(nrb), number of bees recruited for the other nb-ne selected sites (nrb), initial size of patches (ngh).

According to the flowchart in Fig. 1, the BA has the following steps: the first step is placing the ‘ns’

scout bees on the search space, and then in the next step, fitness values of the visited patches are

evaluated. Subsequently the best patches with respect to their fitness value are selected and then split

into two groups containing more scout bees to the elite patches ‘ne’, and less scout bees to the non-

elite best patches ‘nb–ne’. The next step covers the neighbourhood search in the patches given

beforehand, and so according to the neighbourhood search, the patches’ fitness values are evaluated.

Then, the remainder bees, which are created in initial population ‘ns-nb’, will be recruited for the

random search to find better random solutions. Finally, the random patches’ fitness values are

evaluated and this process continues until one of the stopping criteria is met: the solution found is

equal to the real optimum value, the number of iterations reaches the pre-set value, if there is no

significant improvement in the consecutive solutions found, e.g. stuck in local minima.

Table 1 The initial parameters of the BA.

ns Scout bees

nb Best sites

ne Elite sites (with ne<nb)

nre Bees in elite sites

nrb Bees in best sites

ngh Initial size of patches

Itr Iterations

Fig. 1 The flow chart of the basic Bees Algorithm (BA).

4.2 THE BEES ALGORITHM REINFORCED WITH GENETIC OPERATORS

The weakness of the BA is associated with its inability to diversify the global search in order to

explore the solutions space when the search algorithm reaches a plateau or local minima. As shown

in Fig. 2, the GBA keeps the same structure as BA with the addition of reinforced global search and

jumping function strategies. The reinforced search utilises a genetically mutated approach if there is

no optimum solution with the basic BA. In addition, the jumping function utilises single point

crossover, multipoint crossover, mutation and randomisation operators step by step if there is no

improvement with previous operators and strategies. The pseudo-code of hybrid GBA is given in

Fig. 3.

Fig. 2 The flow chart of Genetic Bees Algorithm (GBA).

4.2.1. Reinforced global search strategy

The reinforced global search strategy is one of the proposed strategy in this work which

utilises the mutation operator of the genetic algorithm to enhance the BA. In the proposed GBA,

the global search is enhanced by introducing a genetic mutation operator. This operator is activated if

the 50% of the initial population remains the same using the basic BA. The proposed strategy

implements the mutation operator on the locations which are the non-best ns-nb patches. The main

idea is to generate a best solution from inefficient solutions through the mutations. Considering the

analogy between the bee and the flower patch, generating a best solution is equivalent to generating

the best bee, which is called a Superbee. The aim of the reinforced global search strategy is to create

ns-nb Superbees to replace the bees in the initial population. In the reinforced global search strategy

starts, the length of the mutated string contains the string value of at least half the dimension of the

original solution vector. Thus, the mutated solution preserves at least 50% of the original solution.

Furthermore, the beginning of the mutation can start from any point of the solution vector, randomly.

If the algorithm finds a solution close to the optimum, the solution will increase the convergence rate

of the algorithm, However, the operator of the reinforced global search strategy is conceived in order

to generate offspring from the current population starting from elitism but then applying combination

between crossover and mutation operators (Gen and Cheng, 1997). In this procedure, the best

individuals are obtained to the date that are preserved, so that the algorithm can report, after applying

reinforced global search, the best value is identified. This is, as per literature, a commonly used

approach (Lin et al., 2007a). The quality of each solution is measured by the fitness and the search

space proceeds until the termination condition or enhancement is met.

However, if there is no improvement with this strategy, then the second strategy function, jumping

function strategy, will be activated until an optimised solution is found. In the following section, the

details about the jumping function strategy is presented.

4.2.2. Jumping function strategy

In complex NP-hard type functions, the elite global search may not be enough to find the optimum

solution, this is due to the lack of complete randomness, as stated previously. Moreover, if the

optimum solution is not in the vicinity of one of the existing locations, the BA is not able to converge

to this solution without exploring other promising solutions. Hence, another function, called, jumping

function strategy is proposed in this section using the GA’s crossover (single-point and multi-point),

mutation and randomisation operators which is anticipated to increase the strength and randomness of the

existing solution if there is no solution with the reinforced global search strategy. The jumping function

aims to enhance the global search of the BA and includes initially a crossover operation as stated in

Fig. 2 (i.e., single-point and multi-point crossover are implemented), then a mutation operation and

finally a randomization operation with consecutive evaluations. The main steps of the proposed

strategy are one-point crossover, multi-point crossover, mutation operator, and randomization as

shown in Fig. 2. The main assumption of the jumping function is that if promising solutions are

found, the global optimum can be achieved faster solution with these solutions. To explain steps of

the jumping function, an example is selected as shown in Fig. 4. The selected example is presented

for the test instance of 20 jobs under highly restricted condition (common due date = 43).

Fig. 3 The pseudo code of the GBA.

Step 1. 1. Parameters setting: ns,ne,nb,nre,nrb,ngh,itr.
Step 2. 2. Data set loading: load dataset
Step 3. 3. Initial bees population generating: X=Xrandom; job(ns, njob);

4. Fitness function evaluation:

 F=funObj(ns,C, njob, ptime, ddate, X, data)
5. Ascending sorting of the values of F: [Fsorted, Xsorted]=sorting(F, X, ns)

Step 4. 6. For 1< q <itr

7. For 1< i <ne
8. Generating, for each solution i, the neighborhood matrix MATRscout

9. Randomly allocating of the nre bees to the solutions of MATRscout

10. Generating a matrix X1 with the nre solutions related with the bees

11. Evaluating X1 → F1 = funObj(…)
12 Sorting (X1 e F1) →[F1 , X1] = sorting (F1 , X1 , ne)
13. If the first element of F1 is minor than the i-th element of Fsorted
14. updating Fsorted and Xsorted with the new found solution
15. End
16. End
17. For (ne+1)< i <nb

18. Generating, for each solution i, the neighborhood matrix MATRscout
19. Randomly allocating of the nrb bees to the solutions of MATRscout

20. Generating a matrix X2 with the nre solutions related with the bees
21. Evaluating X2 → F2 = funObj(…)
22. Sorting (X2 e F2) → [F2 , X2] = sorting (F2 , X2 , ne)
23. If the first element of F2 is minor than the i-th element of Fsorted
24. updating Fsorted and Xsorted with the new found solution
25. End
26. End

Step 5. 27. For nb< k <ns

28. Generating indexes, which contains the indexes of the elements to be mutated
29. Mutating the best solution GX= mutation (Xsorted(:, 1), indexes)
30. Evaluating GX using FX=funObj
31. If GX is better than Xsorted(:, 1)
32. Replacing → Xsorted(:, k)=GX

33. Replacing → Fsorted(:, k)=FX
34. End

35. End
36. Sorting the population of Xsorted and the vector Fsorted

Step 6.37. If for 10 iterations the best solution Xsorted(:, 1) does not change
38. While NEWsol is worse than Xsorted(:, 1) or whilestop is not met
39. Employing jumping to Xsorted(:, 1) obtaining NEWsol

40. Evaluating NEWsol
41. End
42. If NEWsol is better than Xsorted(:, 1)
43. Replacing Xsorted(:, 1) with NEWsol and updating Fsorted(1, 1)

44. End
45. End

46. End

Fig. 4 The selected example to demonstrate the jumping function strategy.

 According to the Fig. 4, the row starting with j denotes the job number, tj is the process time for the

job j, the row starting with αj symbolizes the earliness, the row starting with βj denotes the tardiness,

and the row start with dj denotes the common due date of the job j.

A) Single-point crossover operation

This operator is the first stage of the jumping function strategy. The operator activates this stage if

there is no solution with the reinforced global search strategy which utilises only the mutation

operation. This operation starts with the random selection of two parent job string from the solution

space, and the random crossover distance which can be at most the half length of the job string (α%

exchange< 50%). The process will continue to generate two children chromosomes from their parents

by the job string exchange between the parent chromosomes. The child chromosome will be accepted

if the fitness results are better than any parent chromosome and other child chromosome. To illustrate

this process, an example is presented in Fig. 5. According to this figure, two parent chromosomes are

selected as S and T with 4401 and 4498 fitness values, and a random crossover distance is found as

30% (from job 1 to job 6). After the gene exchanges, the child chromosomes are found as ST1 and

ST2 with the fitness values of 4494 and 4406, respectively. Based on this figure, the fitness value of

ST2 job string is found better than parent T and child ST1, hence, the job string of the parent T is

replaced with the job string of ST2 in the gene pool. Hence, the further computation will be conducted

with the chromosomes T and ST2.

Parent Chromosomes

Fig. 5 An example to demonstrate the single point crossover operation.

B) Multi-point crossover operation

This operator is the second GA operators utilised in the jumping function strategy which performs

if the optimum solution or the improvements in both parent chromosomes are not achieved at the

previous step. The strategy implemented on the parent chromosomes. It is proposed two points

crossover operation approach. The process initiates with the parent chromosome selection. The next

stage is to determine the random crossover distances string (α1% and α2% exchanges, and α1% +

α2% < 50%). Based on these two information, the child chromosomes can be generated. To

demonstrate the proposed multi-point crossover operation, the previous example will be utilised. As

stated in the previous stage that one of the parent chromosome was updated. Hence, the process will

be implemented on the updated parents which are chromosomes S and ST2. The second step is to

determine the random crossover distances. The first random crossover distance is found to be started

from forth string with 15% ending gene point, (sixth gene) and second random crossover distance is

found as fifteenth gene in the string with 30% ending gene point (twentieth gene) as shown in Fig. 6.

According to Fig. 6, the strings of the child chromosomes are found as identical with the parents

hence there is no update in the solution pool. Hence the next operation will be utilised.

Random Crossover Distance1 Random Crossover Distance2 Random Crossover Distance1 Random Crossover Distance2

Random Crossover Distance

Random Crossover Distance

Child Chromosomes

Fig. 6 An example to demonstrate the multi point crossover operation.

C) Mutation operation

The mutation operation is another operation to find the optimum solution with the genetically

mutated genes. The process starts with the selection of the original chromosome. Following to the

chromosome selection, the mutation rate and the selection of the gene strings which need to be

mutated need to be found. The process is completed with the gene updates and the updated

chromosomes evaluation stages. To demonstrate the mutation operation, one of the parent

chromosome, which performed the worst in the crossover operation, will be utilised, which is the

chromosome ST2. The mutation rate is found as 15% which is equal to three genes in the

chromosome. These three genes are found as genes 7, 8 and 10. A random mutation exchange is

determined between these genes as following: the gene 7 becomes gene 8, the gene 8 becomes gene

10 and the gene 10 becomes gene 7 with the random allocations. After the gene exchange the fitness

value of the new chromosome is found as 4501, as shown in Fig. 7, which is higher than the original

gene, hence, this chromosome is ignored.

Fig. 7 An example to demonstrate the mutation operation.

D) Randomisation operation

The final operators in the jumping function strategy is the randomisation operator which aims to

find a better or an optimum solution by generation a new chromosome. According to the fitness

Parent Chromosomes

Child Chromosomes

evaluation stage, the newly generated chromosome either will be kept or deleted compare to the

weaker parent chromosome. To demonstrate the process, a newly generated chromosome is found as

ST2R as shown in Fig. 8. Based on the fitness evaluation the fitness (objective) value is found as 4394

(it is an optimum solution). Hence, the chromosome ST2 will be replaced to the chromosome ST2R.

This process will continue along side with the basic BA until the optimum solution is found.

Fig. 8 An example to demonstrate the randomisation operation.

5. EXPERIMENTAL ANALYSIS AND RESULTS

5.1 TUNING PHASE AND MAIN PERFORMANCES

The numerical experiments used the set of 280 test problems proposed by Biskup and Feldman,

(2001), and available on internet at (http://people.brunel.ac.uk/~mastjjb/jeb/orlib/schinfo.html). The

problem set is divided by size into seven groups having n= 10, 20, 50, 100, 200, 500, 1000 jobs,

respectively with each category containing ten instances (in# is the instance amount) to be tested. The

values of h= 0.2, 0.4, 0.6, 0.8 classify the problem as less or more restricted against common due date

D. The proposed GBA was implemented in Intel
®
 Core™ i7 CPU @ 2.93GHz. Since the Bees

Algorithm is a stochastic based method, it generally requires reporting an average amount while

considering percentage offset (% Offset) over different runs to have a meaningful result.

The advantage of GBA over BA is due to its power to avoid getting stuck in local minima of the

objective function values. In other words, GBA performs Reinforced Global Search and Jumping

Function strategies, in order to unblock the search and venture into new space when it gets stuck in

local minima. As shown in Fig. 9 and 10, whenever both algorithms utilise the same initial parameters

set for the number of patches, the number of elite and the non-elite best patches, there is a

considerable gain in quality of solution at a fixed iteration number. However, the convergence

performance of the both algorithms are totally different. Fig. 9 and 10 demonstrate the comparison of

performances between the GBA and the basic BA in a constrained test problem (h=0.2) from Biskup

and Feldman, (2001) at the optimum for SMETP. The proposed Reinforcing Global Search and

jumping function strategies increase the capability of exploration and exploitation of the basic BA.

While the GBA reaches the optimum value after 10 iterations, the basic BA needs 4000 iterations (on

the same test problem under the same algorithm parameters).

Fig. 9 The performance of the BA for n=10, h=0.2 and the optimum value of 1936 (tuning under

parameters: ns=50; nb=5; ne=3; nrb=5; nre=5; ngh=5.

Fig. 10 The performance of the GBA for n=10, h=0.2 and the optimum value of 1936 (tuning under

parameters: ns=50; nb=5; ne=3; nrb=5; nre=5; ngh=5).

The grater population size influences on exploitation in solution while gaining in exploration of the

domain. However, the larger colony size causes the longer processing time to achieve the optimum

solution (following a non-polynomial trend). As a matter of fact, a relation between computational

time and number of iteration to an optimum set can be constructed as shown in Fig. 11, evolving

linearly with the test data. In condition of highly restricted scheduling instances (ℎ	 � 0.4), the GBA

is capable of finding the optimum solution in small size (n<100) of instances with the lower

computational effort. Time for a stable solution for benchmark instances is less or around seconds

(Feldmann and Biskup, 2003). In almost all the highly-restricted instances, the GBA shows superior

performances compared to the meta- heuristics proposed by Biskup and Feldman, (2001), and

comparable with the Upper Bound of the literature (Lin et al., 2007a). However, for value of h>0.4

and number of jobs higher than 200, given the NP-hard nature, the problem required a higher

computational effort (see Fig. 11).

Fig. 11 Computational time in seconds and Iteration to optimum for different SMETP instances under

varying h-constraint for values as reported in Biskup and Feldman, (2001).

 In Fig. 11, the referral value of calculation time is presented in seconds and number of iterations

which the GBA achieved its best solution in the specific test problem of the restricted class (this mean

convergence to a fixed optimal amount). In order to tune the GBA, an approach based on the analysis

of the % effort= (Ioptimum/TI) x 100 is utilised, where Ioptimum is the iteration at which the algorithm

achieved its best solution over ten runs for a specific test problem and TI is the computation time.

 The percentage effort (%effort) as defined in Nearchou, (2008) is remarkably higher (more than

30%) for the proposed GBA in comparison with the DE approach of Nearchou, (2008). %effort is then

reported as average value among ten runs according to Bonferroni correction (Fig. 12). Results show

that when the problem size increases, the time to reach an optimal solution increases even though the

number of iterations remains almost constant (Fig. 11). Moreover, %effort seems to decrease when

GBA parameters increase. This requires analysis of interactions between parameters under different

case study. This behaviour is almost similar for the basic BA.

 Interaction between parameters was evaluated based on Taguchi orthogonal arrays (Taguchi, 1986;

Lambiase and Miranda 2003; Yuce et al., 2014b) and the corresponding results are shown in reports

of Fig. 12. Each line corresponds to a different data test (i.e., n= 10, 20, 50, 100, 200 with h=0.2 -

mean across ten instance of each class) and reported as percentage efforts (%efforts) according to

various configurations. The average values of ten repetitions are reported in Fig. 13 and 14. A larger

population size makes the algorithm working more slowly, but a better solution will eventually be

achieved. However, the correct tuning depends on the problems being solved. The optimisation

computation time requires higher %effort as the problem increases in size and the values of

parameters increase. There is an evident optimal value of ngh around 10 that can be used for all tests,

while an optimal value of nre around 12 can be used. There is a suggest value of nrb around 8. The

influence in terms of %effort of nrb and nre is remarkable between tests as its correspondent value

increases. In general, the remarks in %efforts don’t demonstrate the evidence for ns and nb and ne

values of 100, 50 and 8, respectively. These considerations are set in GBA for outputs as per the

results section.

(a)

(b)

2001801601401201008060504020

100

80

60

40

20

0

ns

M
e
a
n
 o
f
%
e
ff
o
rt

10

20

50

100

200

n

%effort varying ns for different case study n

100908070605040302010

100

80

60

40

20

0

ne

M
e
a
n
 o
f
%
e
ff
o
r
t

10

20

50

100

200

n

%effort varying ne for different case study n

c)

d)

e)

f)

Fig. 12 Percentage effort for different values of ns (a), nb (b), ne (c), nrb (d), nre (e), ngh (f) for

various test data. h=0.2.

 For the restricted class n/1/ET large test instance, optimal performances can be achieved in a

computational time around 45 minutes (mean across h≤ 0.4 value for n= 1000) that remains lower

compare to the DE approach (Nearchou, 2008). However, the GBA could suffer of getting stuck in

local optimum when h>0.4. For this reason, tuning become fundamental for the performances of the

GBA, using a Reinforcing Global Search strategy - it needs to be set on a great ns amount - and

Jumping Function strategy which is based on limited Iteration (iteration). The GBA, as explained

above, manifests better performance in terms of exploitation of the domain, but suffers in local

exploitation, which sometimes requires continuous jumping in new patches. As a matter of fact,

%effort is high when the GBA parameters assume low values as shown in Fig. 11 and therefore

mutation and crossover need to be increased.

111098765432

100

80

60

40

20

0

nb

M
e
a
n
 o
f
%
e
ff
o
rt

10

20

50

100

200

n

%effort varying ns for different case study n

50454035302520151085

80

70

60

50

40

30

20

10

0

nrb

M
e
a
n
 o
f
%
e
ff
o
rt

10

20

50

100

200

n

%effort varying nrb for different case study n

10090807060504030201210

90

80

70

60

50

40

30

20

10

0

nre

M
e
a
n
 o
f
%
e
ff
o
rt

10

20

50

100

200

n

%effort varying nre for different case study n

Fig. 13 The performance comparison of the BA (blue line) and the GBA (red line) under n=10 h=0.2;

(tuning under parameters : ns=50; nb=5; ne=3; nrb=5; nre=5; ngh=5).

Fig. 14 The performance comparison of the BA (blue line) vs. GBA (red line) - under n= 50

h=0.2;(tuning under parameters : ns=50; nb=5; ne=3; nrb=5; nre=5; ngh=5).

5.2 RESULTS

The results obtained by the GBA, which are applied on the instances proposed by Biskup and

Feldmann, (2001), are presented in Table 2, Table 3, Table 4 and Table 5. In particular, the

computation results, concerning small and large size benchmark problems, obtained by the GBA, are

compared to those obtained from the BA (under optimal tuning), the upper bounds from

Feldmann and Biskup, (2003) meta-heuristics (Table 3, Table 4) and the existing meta-heuristics

according to literature review (Table 4, Table 5). The comparison between approaches generated

using different tunings, ten runs, at fixed h and 5000 iterations are reported in Table 2.

Table 2 The BA vs the GBA for n= {10 & 20 &50 &100 & 200 & 500 & 1000} – average results

of ten runs for h=0.2. Registered performance after 5000 iterations (tuning under parameters :

ns=50;nb=5; ne=3;nrb=5; nre=5; ngh=5), * as optimum.

 Iteration is the number iteration, UB as F&B is the upper boundary in Feldmann and Biskup, (2003).

 The global performance of the GBA and the BA is reported by calculating the Percentage Offset (%

Offset) under multiple runs. The fitness value presented in Table 2 is computed based on the

difference between the Upper Bound cost function and the best solution found over different runs as

described in Law and Kelton’s, (2000) with a Bonferroni correction due to multiple performance

measures used by Quinzi, (2004). The relative convergence performance is presented in Table 2

based on the following transformation: % Offset = 100 (FGBA-FBA)/FBA (the relative convergence

between GBA and BA). The GBA used genetic operator with single-point and multi-point (two

points) crossover operators proportionally to the size of test instances and related to its steady state in

local optimum with uniform mutation (for a fixed-length with upper and lower bound according to the

size of test instances and in incremental shape).

Moreover, it is decided to evaluate relative comparison between GBA and BA when it is seeking for

the global optimum. A wider comparison is set to evaluate the performance of GBA if compared with

the BA approach. For all the instances, the GBA was settled according to a Taguchi analysis on main

and integration effects with: number of scout bees (ns) = 200; number of sites selected out of ns

visited sites (nb) = 100, number of elite sites out of nb selected sites (ne) = 11, number of bees

recruited for the best ne sites (nre) = 8, number of bees recruited for the other nb-ne selected sites

(nrb) = 12, initial size of patches (ngh) = 2. Table 3 reports the percentage offset over different

problem size n over in# and 4 restrictive factor h. Multiple runs (10 for each issue) have been

computed and the best out of ten runs is used for comparison. This procedure follows as similar to

methodology proposed by Hino et al., (2005). The GBA algorithm was implementing using the

BA GBA UB as F&B BA GBA BA GBA

10 5000 5000 1936* 1,936 1,936 0,00% 0,00%

20 5000 5000 4,431 5,297 4,394 19.54% -0.84%

50 5000 5000 42,363 54,334 40,642 28.26% -4.06%

100 5000 5000 156,103 232,170 146,345 48.73% -6.25%

200 5000 5000 526,666 905,572 498,653 71.94% -5.32%

500 5000 5000 3,113,088 3,480,069 2,954,852 11.79% -5.08%

1000 5000 5000 15,190,371 16,143,289 14,054,930 6.27% -7.47%

n
 Iteration Fitness Value % Offset

standard tuning approach. The GBA and the BA used the same set of parameters over iteration

(Iteration). This may influence performance of the approach but it leads to a robust comparison

between different test cases. The value of h in the header of the tables indicates the constrained shape

of the instances. According to the experiments, GBA did not outperform over the BA in all instances.

There are some particular instances where the BA gains better outcome - but it manifests a mean

global outperformance.

Table 3 The percentage offset (mean among 10 benchmarks under different restrictive factor (h) of

the GBA and the BA.

The results obtained with the proposed algorithm based on the time in minutes and Iteration at best -

over 10 runs - (as per Table 3 and Table 5) are presented in Table 4. Computation time is about an

hour for unrestricted large instances. This is longer in relation to what Lin et al., (2007a) presented in

the Genetic Algorithm and Simulated Annealing with greedy local exploration search. These two

approaches will be, hereafter, indicated as GA/SA + greedy local search. For the class of 1000 jobs,

Lin et al., (2007a) obtained an average optimal value after 81.749 seconds, however, it is found as

44.42 minutes using GBA. Notwithstanding, GBA - as per the results of Table 5 - obtains generally

the best performance in terms of quality of results.

 As it is highlighted in Table 4, that the GBA is quite fast for the instances up to 200 jobs, such as,

the average CPU time is under 0.46 seconds for small size problem (n=10), and it is found that the

average CPU time is under 37 seconds for problems with n≤50. The corresponding average CPU time

reported by Feldman and Biskup (2003) are approximatively 87.3 seconds for n≤50 jobs.

Table 4 Running times (minutes) on Intel
®
 Core™ i7 CPU @ 2.93GHz at the best out ten runs (mean

among in#) for GBA.

For an absolute remark and the relative comparison with other meta-heuristics, it can be observed in

the work presented by Pham et al., (2011) where the data of Table 5 is partially originated. This

approach enables to demonstrate the absolute presentation of the proposed solutions. Each cell of the

Table 5 represents the average percentage differences for the 10 instances (in#) of the corresponding

size n and restricted factor h. It can be noted that the GBA outperforms the BA in all instances. The

mean of difference in quality of computational solution is about -1.73% and the remarkable gain is

obtained when the size of the problem increases. The GBA is showing an improvement in the solution

for all the scenarios and the BA is manifesting not good quality of results whatever unrestricted are

implemented (h>0.4). The application of heuristics in this context is justified by the quality of the

solution compared with the Feldmann and Biskup, (2003) benchmarks but for the class of problem in

issue running time is sometimes an open issue compare to the shortest one (GA/SA & Greedy Local

Search).

Table 5 The maximum deviation between heuristics according to each h value- best among ten runs,

mean across in# - (Best results so far in the literature are reported in bold).

Time Iteration Time Iteration Time Iteration Time Iteration Time Iteration Time Iteration Time Iteration

0.2 0.007 11 0.017 20 0.321 281 4.301 2152 3.457 1141 15.649 1831 39.463 2607

0.4 0.003 2 0.016 18 0.227 169 5.000 2078 3.936 936 19.717 2159 49.767 3275

0.6 0.007 5 0.231 140 1.504 1102 2.936 1554 16.055 1158 25.956 2629 34.264 4420

0.8 0.008 6 0.019 15 0.426 162 4.090 1359 5.215 1009 16.463 1962 54.203 3850

n

h 500 100010 20 50 100 200

DPSO TS GA HTG HGT DE
GA/SA & Greedy

Local Search
BA GBA

10 0.00 0.25 0.12 0.12 0.12 0.00 0.00 0.00 -0.03

20 -3.84 -3.84 -3.84 -3.84 -3.84 -3.84 -3.84 -3.84 -3.84

50 -5.70 -5.70 -5.68 -5.70 -5.70 -5.69 -5.70 -5.70 -5.70

100 -6.19 -6.19 -6.17 -6.19 -6.19 -6.17 -6.19 -6.19 -6.19

200 -5.78 -5.76 -5.74 -5.76 -5.76 -5.77 -5.78 -5.78 -5.78

500 -6.42 -6.41 -6.41 -6.41 -6.41 -6.43 -6.43 -6.43 -6.43

1,000 -6.76 -6.73 -6.75 -6.74 -6.74 -6.72 -6.77 -6.76 -6.76

Average -4.96 -4.91 -4.92 -4.93 -4.93 -4.95 -4.96 -4.96 -4.96

n

h = 0.2

DPSO TS GA HTG HGT DE
GA/SA & Greedy

Local Search
BA GBA

10 0.00 0.24 0.19 0.19 0.19 0.00 0.00 0.00 0.00

20 -1.63 -1.62 -1.62 -1.62 -1.62 -1.63 -1.63 -1.63 -1.63

50 -4.66 -4.66 -4.60 -4.66 -4.66 -4.66 -4.66 -4.66 -4.66

100 -4.94 -4.93 -4.91 -4.93 -4.93 -4.89 -4.94 -4.94 -4.94

200 -3.75 -3.74 -3.75 -3.75 -3.75 -3.72 -3.75 -3.75 -3.75

500 -3.56 -3.57 -3.58 -3.58 -3.58 -3.57 -3.58 -3.57 -3.57

1,000 -4.37 -4.39 -4.40 -4.39 -4.39 -4.38 -4.40 -4.35 -4.35

Average -3.27 -3.24 -3.24 -3.25 -3.25 -3.26 -3.28 -3.27 -3.27

n

h = 0.4

* DPSO: Discrete Particle Swarm Optimisation; TS: Tabu Search, GA: Genetic Algorithm; HTG: Tabu Search & Genetic

Algorithm, HGT: Genetic Algorithm & Tabu Search; Differential Evolution; Genetic Algorithm or Simulated Annealing &

Greedy Local Search; BA: Bees Algorithm, GBA: Genetic Algorithm & Bees Algorithm.

 According to Table 5, the presented results summarise the performances among problems with

different n values for each h value, considering the best (out of 10 runs and mean across in#)

performance results as compared in Hino et al., (2005); Pan et al., (2006); Lin et al., (2007b); and

Nearchou (2008). Hino et al., (2005), proposed approaches include Tabu Search (TS), Genetic

Algorithm (GA), Hybrid of Tabu search and Genetic algorithm (HTG) and Hybrid of Genetic

algorithm and Tabu search (HGT). Pan et al., (2006) reported the Discrete Particle Swarm

Optimisation algorithm (DPSO). Nearchou, (2008) used Differential Evolution (DE) as the

optimisation heuristic to solve this problem. Note that Feldman and Biskup, (2003) used five

heuristics (namely, Evolution Search (ES), Simulating Annealing (SA), Threshold Accepting (TA)

and TA with a back step (TAR)) and the best solution among heuristics is presented. Results

illustrates performances in constrained instances (i.e., h ≤ 0.4), there is a good improvement (about -

0.012) in gain compare to the best (in average the BA reported, if GBA is not included, the best

among other) among the heuristics in mean - between classes - value. In highly constrained problems

(h=0.2), there is generally a great difference (0.024) over the best results so far in the literature. Here

GBA outperforms compare to other heuristics, if the large the population sizes (i.e., n≥ 100 test data)

DPSO TS GA HTG HGT DE
GA/SA & Greedy

Local Search
BA GBA

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

20 -0.41 -0.41 -0.28 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41

50 -0.24 -0.24 -0.19 -0.23 -0.23 -0.24 -0.24 -0.24 -0.24

100 -0.18 -0.15 -0.12 -0.08 -0.11 -0.17 -0.18 -0.18 -0.18

200 -0.15 -0.04 -0.14 0.26 0.07 0.20 -0.15 -0.15 -0.15

500 -0.11 0.21 -0.11 0.73 0.13 1.01 -0.11 -0.11 -0.11

1,000 -0.06 1.13 -0.05 1.28 0.40 2.79 -0.06 -0.05 -0.05

Average -0.16 0.07 -0.13 0.22 -0.02 0.45 -0.16 -0.16 -0.16

n

h = 0.8

DPSO TS GA HTG HGT DE
GA/SA & Greedy

Local Search
BA GBA

10 0.00 0.10 0.03 0.03 0.01 0.00 0.01 0.00 0.00

20 -0.72 -0.71 -0.68 -0.71 -0.71 -0.72 -0.72 -0.72 -0.72

50 -0.34 -0.32 -0.31 -0.27 -0.31 -0.32 -0.34 -0.34 -0.34

100 -0.15 -0.01 -0.12 0.08 0.04 -0.13 -0.15 -0.15 -0.15

200 -0.15 -0.01 -0.13 0.37 0.07 0.23 -0.15 -0.15 -0.15

500 -0.11 0.25 -0.11 0.73 0.15 1.72 -0.11 -0.11 -0.11

1,000 -0.06 1.01 -0.05 1.28 0.42 1.29 -0.06 -0.05 -0.05

Average -0.22 0.04 -0.20 0.22 -0.05 0.30 -0.22 -0.22 -0.22

n

h = 0.6

are utilised, there is an average of 5.92 gain in performance. When problem size increases, the GBA

performances such as exploration of domain and time to convergence worsen (even though

comparable with other heuristics except) compare to the best solutions with the differential

evolutionary approach presented by Nearchou, (2008). For the case of h>0.4, the GBA generally

confirmed its good capability in solving the problem, however the gain is null compare to the bests

found by other heuristics.

 It is also worth to note that the search process starts with a randomly generated population set, as

for the DE approach of Nearchou, (2008), however, results obtained by GBA are greatly better in

terms of % effort (for the case of 1000 jobs the DE approach obtained optimum in the average among

in# of 141 minutes with no comparable performances in terms of average quality of objectives).

Moreover, another important property of GBA is not to have any priority rules to find the optimum

solution. Since, there are three types of rules have been presented to achieve the optimum schedule in

literature (Feldmann and Biskup, (2003); and Lin et al., (2007a)), these rules are as following: 1) the

optimum schedule would not have any idle times between consecutive jobs, 2) the optimum schedule

would not have an increasing order of ratios (Tj/αj) for the jobs completed before and starting after

due date (D), and 3)an optimum schedule will be achieved with either by starting the first job at time

zero or by completing one job at the time D. Most of the heuristics utilise these three priority rules to

achieve the optimum schedule, however, there is no requirement for the GBA to find the optimum

schedule. Since the random initialisations and additional genetic operators allow the algorithm to seek

for the optimum schedule. To avoid the randomness of the quality of solution, the best result of the 10

runs is considered during the experiments, as shown in Table 5. Since the usage of single solutions

may not provide the robustness of the algorithm, however the average of the multi-results are the

robust and trustable results. Based on the results presented in Table 5, the performance of the GBA

can be observed in Table 5 clearly, that the GBA provides more accurate results in average.

Finally, as a matter of fact, when the class of the problem increases, the GBA is surpassed by the

DPSO that has the advantage of minimum time convergence.

6. CONCLUSION

In this paper, a novel Genetic Bees Algorithm (GBA) is introduced. The proposed GBA is applied

to solve the Single Machine Scheduling problem with earliness and tardiness penalties and the results

illustrate that its performance is better in most cases when h value is lower. The GBA is a new

evolutionary optimisation method that is used in a wide range of engineering applications. In this

paper, it is utilised for the optimisation of single machine scheduling problem which is classified as

the combinatorial optimisation problems.

The algorithm is developed without inclusion of idle time between tasks, and this mainly affects

performances of the approach in lightly constrained (h>0.4) jobs. In terms of exploitation and

number of iteration, the proposed meta-heuristic achieves better performance compare to the upper

boundary and the basic Bees Algorithm. The hybrid Genetic Bees Algorithm has proven to be more

stable and robust than the basic Bees Algorithm.

Possible direction for future researches include employing the same GBA approach in the case of

multi-machine (m-machine) scheduling problem with general non-linear earliness and tardiness

penalties to find an optimal solution in case of real test instances.

Further, an initialisation procedure will also be introduced to improve the quality of solution in terms

of percentage effort and in particular time for CPU time.

REFERENCES

Abdul-Razaq, T. S. and Potts, C. N. (1988). Dynamic programming state-space relaxation for single-

machine scheduling. Journal of the Operational Research Society, 39, 141-152.

Almeida, M. T., and Centeno, M. (1998). A composite heuristic for the single machine early/tardy job

scheduling problem. Computers & Operations Research, 25(7), 625-635.

Bagchi, U., Sullivan, R. S. and Chang, Y. L. (1986). Minimizing mean absolute deviation of

completion times about a common due date. Naval Research Logistics Quarterly, 33(2), 227-240.

Baker, K. R. and Scudder, G. D. (1990). Sequencing with earliness and tardiness penalties: a review.

Operations research, 38(1), 22-36.

Ballestín, F. and Leus, R. (2008). Meta-heuristics for stable scheduling on a single machine.

Computers & operations research, 35(7), 2175-2192.

Bellgran, M. and Säfsten, K. (2010). Manufacturing Development: Design and Operation of

Manufacturing Systems. London: Springer-Verlag.

Biskup, D. and Feldmann, M. (2001). Benchmarks for scheduling on a single machine against

restrictive and unrestrictive common due dates. Computers & Operations Research, 28(8), 787-801.

Carlier, J. (1982). The one-machine sequencing problem. European Journal of Operational Research,

11(1), 42-47.

Cheng, T. C. E. (1984). Optimal due-date determination and sequencing of n jobs on a single

machine. Journal of the Operational Research Society, 433-437.

Cheng, T. C. E. and Kahlbacher. H. G. (1991). A proof for the longest-job first policy in one machine

scheduling. Naval Research Logistics, 38,715-720.

Cheng, T. E. (1988). Optimal common due-date with limited completion time deviation. Computers &

operations research, 15(2), 91-96.

Chen, Z. L. (1996). Scheduling and common due date assignment with earliness-tardiness penalties

and batch delivery costs. European Journal of Operational Research, 93(1), 49-60.

Cheng, T. C. E., Kang, L. and Ng, C. T. (2004). Due-date assignment and single machine scheduling

with deteriorating jobs. Journal of the Operational Research Society, 198-203.

Chen, W. Y. and Sheen, G. J. (2007). Single-machine scheduling with multiple performance

measures: Minimizing job-dependent earliness and tardiness subject to the number of tardy jobs.

International Journal of Production Economics, 109(1), 214-229.

Crauwels, H. A. J., Potts, C. N. and Van Wassenhove, L. N. (1997). Local search heuristics for single

machine scheduling with batch set-up times to minimize total weighted completion time. Annals of

Operations Research, 70, 261-279.

Crina, G. and Ajith, A. (2006). Stigmergic optimization: Inspiration, technologies and perspectives. In

Stigmergic optimization (pp. 1-24). Springer Berlin Heidelberg.

Della Croce, F., Salassa, F. and T'kindt, V. (2014). A hybrid heuristic approach for single machine

scheduling with release times. Computers & Operations Research, 45, 7-11.

Dombrowski, U., Intra, C., Zahn, T. and Krenkel, P. (2016). Manufacturing Strategy – A Neglected

Success Factor for Improving Competitiveness. Procedia CIRP, 41, 9-14.

Du, J. and Leung, J. Y. T. (1990). Minimizing total tardiness on one machine is NP-hard.

Mathematics of operations research, 15(3), 483-495.

Emmons, H. (1969). One-machine sequencing to minimize certain functions of job tardiness.

Operations Research, 17(4), 701-715.

Feldmann, M. and Biskup, D. (2003). Single-machine scheduling for minimizing earliness and

tardiness penalties by meta-heuristic approaches. Computers & Industrial Engineering, 44(2), 307-

323.

Fera, M., Fruggiero, F., Lambiase, A., Martino, G. and Nenni, M. E. (2013). Production scheduling

approaches for operations management - INTECH Open Access Publisher.

Fisher, M. L. and Jaikumar, R. (1978). An algorithm for the space-shuttle scheduling problem.

Operations Research, 26(1), 166-182.

Franca, P. M., Mendes, A. and Moscato, P. (2001). A memetic algorithm for the total tardiness single

machine scheduling problem. European Journal of Operational Research, 132(1), 224-242.

French, S. (1982). Sequencing and scheduling: an introduction to the mathematics of the job-shop.

Chichester: Ellis Horwood.

Gen, M. and R. Cheng. (1997). Genetic Algorithms and Engineering Design. New York: John Wiley

and Sons.

Gessner, R. A. A. (1986). Master Production Schedule Planning. New York: John Wiley and Sons.

Goldberg, D. E. (1989). Genetic algorithms in search optimization and machine learning. Vol. 412.

Reading Menlo Park: Addison-Wesley.

Gordon, V., Proth, J. M. and Chu, C. (2002). A survey of the state-of-the-art of common due date

assignment and scheduling research. European Journal of Operational Research, 139(1), 1-25.

Gordon, V. S. and Strusevich, V. A. (2009). Single machine scheduling and due date assignment with

positionally dependent processing times. European Journal of Operational Research, 198(1), 57-62.

Gould, J. L. (1975). Honey bee recruitment: the dance-language controversy. Science, 189(4204),

685-693.

Graham, R. L., Lawler, E. L., Lenstra, J. K. and Kan, A. R. (1979). Optimization and approximation

in deterministic sequencing and scheduling: a survey. Annals of discrete mathematics, 5, 287-326.

Gupta, S. K. and Sen, T. (1983). Minimizing a quadratic function of job lateness on a single machine.

Engineering Costs and Production Economics, 7(3), 187-194.

Gupta, S.K. and Kyparisis, J. 1987. Single machine scheduling research. OMEGA, 15, 207-227.

Hino, C. M., Ronconi, D. P. and Mendes, A. B. (2005). Minimizing earliness and tardiness penalties

in a single-machine problem with a common due date. European Journal of Operational Research,

160(1), 190-201.

Huang, Z. (2008). Behavioral Communications: The Waggle Dance, Available at: http

http://photo.bees.net/biology/ch6/dance2.html [Accessed: 11th February 2012].

Janiak, A. (1991). Single machine scheduling problem with a common deadline and resource

dependent release dates. European Journal of Operational Research, 53(3), 317-325.

Jaegyun, K. (1999). A hybrid genetic approach for single machine scheduling with distinct due dates

and release times. In the proc. of the Third Russian-Korean International Symposium on Science and

Technology, KORUS '99, 1, 245-248.

Jolai, F., Rabbani, M., Amalnick, S., Dabaghi, A., Dehghan, M. and Parast, M. Y. (2007). Genetic

algorithm for bi-criteria single machine scheduling problem of minimizing maximum earliness and

number of tardy jobs. Applied Mathematics and Computation, 194(2), 552-560.

Kanet, J. J. (1981). Minimizing the average deviation of job completion times about a common due

date. Naval Research Logistics Quarterly, 28(4), 643-651.

Lambiase, A. and Miranda, S. (2003) Performance parameters optimization of a pneumatic

programmable palletizer using Taguchi method. Robotics and Computer-Integrated Manufacturing,

19(1-2), 147-155.

Lauff, V. and Werner, F. (2004). On the complexity and some properties of multi-stage scheduling

problems with earliness and tardiness penalties. Computers & Operations Research, 31(3), 317-345.

Law, A. M. and Kelton, W.D., 2000. Simulation Modeling and Analysis. New York: McGraw-Hill.

Lawler, E. L. (1979). Fast approximation algorithms for knapsack problems. Mathematics of

Operations Research, 4(4), 339-356.

Lee, C. Y., Danusaputro, S. L. and Lin, C. S. (1991). Minimizing weighted number of tardy jobs and

weighted earliness-tardiness penalties about a common due date. Computers & Operations Research,

18(4), 379-389.

Li, G. (1997). Single machine earliness and tardiness scheduling. European Journal of Operational

Research, 96, 546–558.

Li, L., Fonseca, D. J. and Chen, D. S. (2006). Earliness–tardiness production planning for just-in-time

manufacturing: A unifying approach by goal programming. European Journal of Operational

Research, 175(1), 508-515.

Li, S., Ng, C. T. and Yuan, J. (2011). Group scheduling and due date assignment on a single machine.

International Journal of Production Economics, 130(2), 230-235.

Liaw, C. F. (1999). A branch-and-bound algorithm for the single machine earliness and tardiness

scheduling problem. Computers & Operations Research, 26, 679–693.

Lin, S. W., Chou, S. C. and Chen, S. C. (2007a). Meta-heuristic approaches for minimizing total

earliness and tardiness penalties of single-machine scheduling with a common due date. Journal of

Heuristics, 13(2), 151-65.

Lin, S. W., Chou, S. Y. and Ying, K. C. (2007b). A sequential exchange approach for minimizing

earliness–tardiness penalties of single-machine scheduling with a common due date. European

Journal of Operational Research, 177(2), 1294-1301.

Liu, F., Wang, J. J. and Yang, D. L. (2013). Solving single machine scheduling under disruption with

discounted costs by quantum-inspired hybrid heuristics. Journal of Manufacturing Systems, 32(4),

715-723.

M’Hallah, R. (2007). Minimizing total earliness and tardiness on a single machine using a hybrid

heuristic. Computers & Operations Research, 34(10), 3126-3142.

Michalewicz, Z. (1992). Genetic Algorithms + Data Structures = Evolution Programs. Springer-

Verlag, Berlin.

Ming, H., Baohui, J. and Xu, L. (2011). An Improved Bee Algorithm-Genetic Algorithm, In: J.

Watada, G. Phillips-Wren, L. C. Jain and R. J. Howlett (eds.). Intelligent Decision Technologies, vol.

10 of the Series Smart Innovation, Systems and Technologies. Berlin: Springer-Verlag, 683-689.

Monden, Y. (1983). Toyota Production Systems. Industrial Engineering and Management Press.

Norcross, GA.

Mosheiov, G. and Yovel, U. (2006). Minimizing weighted earliness–tardiness and due-date cost with

unit processing-time jobs. European Journal of Operational Research, 172(2), 528-544.

Nearchou, A. C. (2008). A differential evolution approach for the common due date early/tardy job

scheduling problem. Computers & Operations Research, 35(4), 1329-1343.

Nearchou, A. C. (2011). An efficient meta-heuristic for the single machine common due date

scheduling problem. In Intelligent Production Machines and Systems-2nd I* PROMS Virtual

International Conference 3-14 July 2006, 431.

Nogueira, J. P. C. M., Arroyo, J. E. C., Villadiego, H. M. M. and Goncalves, L. B. (2014). Hybrid

GRASP Heuristics to Solve an Unrelated Parallel Machine Scheduling Problem with Earliness and

Tardiness Penalties. Electronic Notes in Theoretical Computer Science, 53-72.

Ow, P. S. and Morton, T. E. (1989). The single machine early/tardy problem. Management Science,

35(2), 177-191.

Pan, Q. K., Tasgetiren, M. F. and Liang, Y. C. (2006). A discrete particle swarm optimization

algorithm for single machine total earliness and tardiness problem with a common due date. In
Evolutionary Computation, 2006. CEC 2006. IEEE Congress on (pp. 3281-3288).

Pinedo, M. L. (2012). Scheduling: Theory, Algorithms, and Systems, London: Springer.

Panwalkar, S. S., Smith, M. L. and Seidmann, A. (1982). Common due date assignment to minimize

total penalty for the one machine scheduling problem. Operations research, 30(2), 391-399.

Pham, D. T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S. and Zaidi, M. (2005). The Bees

Algorithm. Technical note. Manufacturing Engineering Centre, Cardiff University, UK, 1-57.

Pham, D. T., Koc, E., Lee, J. Y. and Phrueksanant, J. (2007). Using the Bees Algorithm to schedule

jobs for a machine. In proc. of the 8th Int. Conf. and Exhibition on Laser Metrology, Machine Tool,

CMM & Robotic Performance, LAMDAMAP, Cardiff, UK.

 Pham, D. T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S. and Zaidi, M. (2011). The Bees

Algorithm–A Novel Tool for Complex Optimisation. In Intelligent Production Machines and

Systems-2nd I* PROMS Virtual International Conference 3-14 July 2006, 454.

Quinzi, A. J., (2004) A Sequential Stopping Rule for Determining the Number of Replications

Necessary When Several Measures of Effectiveness are of Interest. In proceedings of Tenth U.S. Army

Conference on Applied Statistics.

Schaller, J. (2007). A comparison of lower bounds for the single-machine early/tardy problem.

Computers & operations research, 34(8), 2279-2292.

Seeley, T. D. (2009). The wisdom of the hive: the social physiology of honey bee colonies. Harvard

University Press.

Seidmann, A., Panwalkar, S. S. and Smith, M. L. (1981). Optimal assignment of due-dates for a single

processor scheduling problem. The International Journal of Production Research, 19(4), 393-399.

Sen, T., Dileepan, P. and Lind, M. R. (1996). Minimizing a weighted quadratic function of job

lateness in the single machine system. International journal of production economics, 42(3), 237-243.

Singh, A. (2010). A hybrid permutation-coded evolutionary algorithm for the early/tardy scheduling

problem. Asia-Pacific Journal of Operational Research, 27, 713-725.

Sioud, A., Gravel, M. and Gagné, C. (2012). A hybrid genetic algorithm for the single machine

scheduling problem with sequence-dependent setup times. Computers & Operations Research,

39(10), 2415-2424.

Su, L. H. and Chang, P. C. (1998). A heuristic to minimize a quadratic function of job lateness on a

single machine. International Journal of Production Economics, 55(2), 169-175.

Sundar, S. and Singh A. (2012). A swarm intelligence approach to the early/tardy scheduling problem.

Swarm and Evolutionary Computation, 4, 25-32.

Taguchi, G. (1986). Introduction to quality engineering: designing quality into products and

processes.

Valente, J. M. S. and Alves, R.A.F.S. (2005). Improved heuristics for the early/tardy scheduling

problem with no idle time. Computers & Operations Research, 32(3), 557-569.

Valente, J. M. S., Gonçalves, J. F. and Alves, R. A. F. S. (2006). A hybrid genetic algorithm for the

early/tardy scheduling problem. Asia-Pacific Journal of Operational Research, 23, 393-405.

Valente, J. M. (2008). Beam search heuristics for the single machine early/tardy scheduling problem

with no machine idle time. Computers & Industrial Engineering, 55(3), 663-675.

Valente, J. M. and Schaller, J. E. (2012). Dispatching heuristics for the single machine weighted

quadratic tardiness scheduling problem. Computers & Operations Research, 39(9), 2223-2231.

Von Frisch, K. (2014). Bees: their vision, chemical senses, and language. Cornell University Press.

Wang, X. Y. and Wang, M. Z. (2010). Single machine common flow allowance scheduling with a

rate-modifying activity. Computers & Industrial Engineering, 59(4), 898-902.

Webster, S.T. (1997). The Complexity of Scheduling Job Families about a Common Due Date. Oper.
Res. Lett. 20, 65-74.

Yang, D. L., Lai, C. J. and Yang, S. J. (2014). Scheduling problems with multiple due windows

assignment and controllable processing times on a single machine. International Journal of

Production Economics, 150, 96-103.

Yanushevsky, R.T. (1992). Optimal strategic planning problems in manufacturing based on the input-

output models. Applied Mathematical Modelling, 16(4), 208-213.

Yeung, W. K., Oguz, C. and Cheng, T. E. (2001). Single-machine scheduling with a common due

window. Computers & Operations Research, 28(2), 157-175.

Yuce, B., Packianather, M. S., Mastrocinque, E., Pham, D. T. and Lambiase, A. (2013). Honey bees

inspired optimization method: The Bees Algorithm. Insects, 4(4), 646-662.

Yuce, B., Mastrocinque, E., Lambiase, A., Packianather, M. S. and Pham, D. T. (2014a). A multi-

objective supply chain optimisation using enhanced Bees Algorithm with adaptive neighbourhood

search and site abandonment strategy. Swarm and Evolutionary Computation, 18, 71-82.

Yuce, B., Mastrocinque, E., Packianather, M. S., Lambiase, A. and Fruggiero, F. (2014b) Neural

network design and feature selection using principal component analysis and Taguchi method for

identifying wood veneer defects. Production and Manufacturing Research, 2 (1), 291-308.

HIGHLIGHTS

• Development of a robust hybrid stochastic optimisation algorithm using The Bees Algorithm and Genetic

algorithm,

• Genetic operator implementation in the global search side of the Bees Algorithm with a reinforced global search

approach,

• Implementation of the proposed hybrid optimisation algorithm on the Single Machine scheduling problem,

• Evaluation of the proposed algorithm by comparing the results to the results of the other well-known stochastic

optimisation algorithms.

