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ABSTRACT This paper presents a hybrid Genetic-Bees Algorithm based optimised solution for the 

single machine scheduling problem. The enhancement of the Bees Algorithm (BA) is conducted using 

the Genetic Algorithm’s (GA’s) operators during the global search stage. The proposed enhancement 

aims to increase the global search capability of the BA gradually with new additions. Although the 

BA has very successful implementations on various type of optimisation problems, it has found that 

the algorithm suffers from weak global search ability which increases the computational complexities 

on NP-hard type optimisation problems e.g. combinatorial/permutational type optimisation problems. 

This weakness occurs due to using a simple global random search operation during the search process.  

To reinforce the global search process in the BA, the proposed enhancement is utilised to increase 

exploration capability by expanding the number of fittest solutions through the genetical variations of 

promising solutions. The hybridisation process is realised by including two strategies into the basic 

BA, named as “reinforced global search” and “jumping function” strategies. The reinforced global 

search strategy is the first stage of the hybridisation process and contains the mutation operator of the 

GA. The second strategy, jumping function strategy, consists of four GA operators as single point 

crossover, multipoint crossover, mutation and randomisation.   To demonstrate the strength of the 



  

proposed solution, several experiments were carried out on 280 well-known single machine 

benchmark instances, and the results are presented by comparing to other well-known heuristic 

algorithms. According to the experiments, the proposed enhancements provides better capability to 

basic BA to jump from local minima, and GBA performed better compared to BA in terms of 

convergence and the quality of results. The convergence time reduced about 60% with about 30% 

better results for highly constrained jobs.   

KEYWORDS: Swarm-Based Optimisation; Bees Algorithm (BA); Genetic Bees Algorithm (GBA); 

Single Machine Scheduling Problem (SMSP). 

1. INTRODUCTION 

The recent technological developments in production and manufacturing systems have created a 

substantial opportunity to increase the production and manufacturing capability of the organisations in 

order to meet customers’ expectations like the desired product quality and the delivery date. In 

literature, the most popular production and manufacturing systems are found as lean manufacturing, 

flexible manufacturing system, fit manufacturing and just in time (JIT) (Belgran et al., 2010). 

Although these manufacturing systems comprise with robust and well-defined philosophies, in 

practice, unexpected problems like the early or late product delivery times generates a negative 

influence on the organisations and their total manufacturing costs. Therefore, several strategies have 

been proposed in literature to increase the productivity in manufacturing systems including 

technology strategy, location strategy, strategy of validity integration and capacity strategy 

(Dombrowski et al., 2016).  

A well-defined production planning methodology provides a great opportunity to utilise effective 

manufacturing strategies, which involves the information about machining operations, their sequence, 

tools, setup requirements and technological parameters (Yanushevsky, 1992). One of the main 

difficulty to utilise an effective production planning is to determine the uncertainty of the demand, 

hence, an effective master production schedule (MPS) can be achieved (Gessner, 1986). However, the 

MPS can be realised with optimised schedules, but the scheduling optimisations are classified as the 

NP-hard type problems (Pinedo, 2012), which aims   to optimise the operations’ schedules, where 



  

these schedules mostly suffer from the bottlenecks due to machine capacity and jobs’ completion 

times. In literature, the machine scheduling and the determination of the optimum jobs’ orders have 

been tackled since 1980s.  

In Single Machine Earliness/Tardiness Problem (SMETP), performance is measured by the 

minimization of the weighted sum of earliness and tardiness penalties of jobs. In literature, Genetic 

Algorithm is utilised individually to tackle this problem, however, random nature of the algorithm is 

one of the drawbacks to determine the optimum solution for the scheduling problem (2012). Hence, 

they have suggested to increase the efficiency of the algorithm by combining other algorithms, 

especially to increase the local search property. In addition, Pham et al., (2007) presented a single 

machine scheduling solution using the Bees Algorithm. However, the proposed solution suffered from 

being stuck in nonpromising patches which required some perturbations to avoid this weakness. 

Hence, this paper presents an enhancement of the Bees algorithm by combining genetic operators in 

order to solve the SMET problem.  

This paper addresses the single machine scheduling of a set of jobs with a common due date and 

the objective of minimizing the job’s total earliness and tardiness. The proposed meta-heuristic aims 

to combine the Genetic Algorithms’ exploration performances (Goldberg, 1989) with the exploitation 

capacity of the Bees Algorithm (Pham et al., 2005). This paper is organized as follows: section two 

presents the detailed background information and literature on the single machine scheduling problem 

and applied heuristics solutions; section three illustrates modelling of the single machine scheduling 

problem. In section four, the Bees algorithm and its enhancements with the genetic operators are 

presented, section five presents the experimental analysis and results about the proposed technique 

including the tuning phase of the GBA and its application on benchmarks problems. Performances 

were evaluated and compared to the basic Bees approach and other well-known heuristics, by the 

minimization of the weighted sum of earliness and tardiness penalties. Discussion about the role of 

algorithm parameters in terms of efficacy (i.e., objective function) and effectiveness (i.e., 

computational time) is reported. Finally, the conclusion and detailed discussions are included in 

section six. 



  

2. BACKGROUND 

The problem of considering optimal due date assignment together with the definition of an optimal 

scheduling policy was firstly considered by Seidmann et al., (1981) and Panwalkar et al., (1982) using 

analytical approaches. Jaegyun, (1999) stated that an ideal schedule is the one where the all jobs finish 

on their assigned due date. However, it is not an easy task to determine the correct order to assign the 

jobs due the complex nature of the problem. Considering the job scheduling problem within a 

completion time frame, the scheduling problems classified as one of the NP-hard type problems (Lee 

et al., 1991). Moreover, there is also no a certain algorithm to address all types of scheduling problem 

however researchers are trying to address different types of problems with different search algorithms 

to find an optimum solution and increase the search quality such as, Cheng, (1984) demonstrated the 

anticipation for the jobs’ completion under certain production conditions and definition of an optimal 

due date assignments for each job. Single machine scheduling problem, considering lateness 

performance under constrained due date, was firstly discussed by Gupta and Kyparisis, (1987). 

Complexity of this problem was studied in the work of Lauff and Werner, (2004), and, the aim was to 

minimize the sum of the absolute deviations of the completion times from the due. Open and job shop 

systems where compared with two machines flow shop environment in the case of restrictive and non-

restrictive due date and it is proven that flow shop environment is NP-hard in the strong sense. In 

addition, Bagchi et al., (1986) was asserted that the value of the due date might influence the 

computational complexity. The optimal objective function value of a certain problem cannot increase 

by increasing the due date while keeping other parameters as constant. Therefore, there is a time-

period in which the products should be completed on time and then the customers’ deliveries are 

arranged. In general, the restricted common due date types problems are much more difficult to solve 

compared to non-restricted types (Baker and Scudder, 1990). Further, the optimal penalty cost cannot 

decrease with the increase in the common due date in the single machine scheduling (Webster, 1997). 

For the case of single machine scheduling under due date penalties, Kanet, (1981) was the first to 

assume a problem in which penalties occur when a job is completed early or late to restrictive 

assumptions on the due dates and in penalty functions for jobs.  



  

In addition to the above, tardiness penalties due to delivery after a contractually arranged due date, 

consider the loss of customers’ goodwill and damage reputation as well as delay of payment and 

shortages which entails extra costs including late charges (Fisher and Jaikumar, 1978). On the other 

hand, completing a job before the due date increases the cost or probability of related cost due to 

insurance, inventory carrying, holding, theft, perishing and loss of product quality, bounded capital 

(Webster, 1997). Moreover, the increasing adoption of the JIT approach in industries has made due 

date backward assignment an active area of scheduling research (Li et al., 2006). Inventory 

management such as JIT concepts is mainly dependent by the certainty of production capacity and 

lead time. In JIT systems, jobs have to be completed neither too early nor too late (Monden, 1983). 

This leads to the scheduling problems with both earliness and tardiness penalties.  

Single machine scheduling problem occurs every time a closed continuous flow is arranged or 

whatever bottlenecks characterize the overall performances of the considered system. Thus, meeting 

common due dates has always been one of the most important objectives in scheduling and supply 

chain management. At the same time, the common due date makes sense whenever it is not required 

detailed control for jobs or better when all goods and services are comparable in terms of resources 

allocation (Cheng, 1988). In addition, common due date allows managers to reduce the production 

cost and control the organisation financial status by assigning the most appropriate jobs in the 

manufacturing operations (Gordon et al., 2002). However, the selection of the appropriate task is 

highly complicated process which requires advanced solution to be implemented. Moreover, besides 

the delivery of tardy services, the main issue to be taken into account is the cost discount that can be 

derived whenever a warehouse does not exist and products do not have obsolescence or extra costs.  

The problem of common due date for single machine scheduling definition was firstly analysed by 

Panwalker et al., (1982). Common due date can be either externally defined and imposed by the 

market (Baker and Scudder, 1990), or internally defined as a time line manager wants to achieve.  

In literature, several pieces of works have been conducted on the solution of the SMETP problem 

(e.g., Panwalkar, et al., (1982); Cheng, (1984); Janiak, (1991); Cheng et al., (2004); Mosheiov and 

Yovel, (2006); Lin et al., (2007a); Nearchou, (2008); Gordon and Strusevich, (2009); Wang and 

Wang, (2010); Li et al., (2011); Nearchou, (2011); and Yang et al., (2014)). 



  

Benchmarks for scheduling with common due date were presented in the paper of Biskup and 

Feldmann (2001). They generated benchmark data set for SMETP which then became popular among 

the researchers and solved 280 instances using two dedicated heuristics for identifying the upper 

bounds on the optimal function values. Instances and values are currently available in order to test 

performances of newly heuristics. These benchmarks are widely used to test performances in SMETP 

(Feldmann and Biskup, (2003); Chen and Sheen, (2007); Nearchou (2008); Lin et al., (2007b); and 

Nearchou, (2011). Further, the benchmark problem generation process for single machine early/tardy 

scheduling is proposed by Abdul-Razaq and Potts, (1988); Li, (1997); and Liaw, (1999), and widely 

utilised in the heuristics as stated in Valente and Alves, (2005); Valente et al., (2006); Lin et al., 

(2007a); Valente (2008); Valente and Schaller, (2012); and Sundar and Singh, (2012). The 

performance of proposed approaches in the last two papers are not presented with exact solutions 

values. However, there is a relative comparison between heuristics results and upper boundaries. 

Due to the complexity of SMETP local search, meta-heuristic approaches are mainly introduced as 

the solution methods. The total tardiness/earliness problem was first studied by Emmons in late sixties 

(Emmons, 1969). Until the early 70s, most of the studies presented in this field were mainly practice 

oriented, and aiming at designing fast enumerative algorithm to find an optimal schedule. Pseudo 

polynomial time algorithm were proposed by Lawler, (1979) in approximation scheme.  

Adbul-Razaq and Potts, (1988) developed a branch-and-bound algorithm that employs lower 

bounds by the dynamic programming state space relaxation technique. Satisfactory results were 

obtained in a large number of jobs (up to 25 jobs) with lower processing times. Moreover, an efficient 

heuristic based on branch-and-bound algorithm with decomposition of problem into two sub-problems 

and two efficient multiplier adjustments are proposed in the work of Li, (1997) for up to 50 jobs.  

Moreover, a combination of priority dispatching rules with local improvements is used for eliminating 

unpromising nodes in the branch-and-bound algorithm of Liaw, (1999).  Valente and Alves, (2005) 

demonstrated the influence of initial sequence on lower bound as stated in Li, (1997); and Liaw, 

(1999).  A survey regarding algorithms and approaches for SMETP were reported in the works of 

Crauwels et al., (1997). Hybrid constructive strategies for SMETP are performed in Hino et al., 

(2005). The role of almost all dispatching rules for the optimal SMTP (earliness is not included) 



  

issues was stated in Valente and Schaller, (2012). Heuristics approaches to solve SMETP have been 

applied by Yeung et al., (2001). In particular, they developed a branch a bound algorithm to 

minimize, under common due windows, earliness and tardiness penalties. Three meta- heuristics 

approaches for stable scheduling on a single machine based on Branch & Bound and Genetic 

operators were reported in the work of Ballestin and Leus, (2008) based on the start time deviation 

between planned time and actual time. Beams search heuristics with recovery procedures is used in 

the work of Valente, (2008) with optimal performance for small and medium SMETP instances. 

According to experiments of Valente, (2008), an excessive computational time was required for 

medium and large (more than 75 jobs) instances, when the pre-evaluation in beam was included based 

on dispatching rules. A filtered beam search method for near optimal sequences of jobs was proposed 

by Ow and Morton, (1989). Another study using the genetic operators in non-dominated sorting 

algorithm combined with quantum bit representation was proposed by Liu et al., (2013); and Jolai et 

al., (2007). A combination of GA with 14 local search and initialization procedures were developed 

and tested on the randomly generated instances in Valente et al., (2006). They demonstrated that, 

behind the quality of results, the combination of fitness evaluation and GA was greatly accelerating 

the convergence, and reduced number of iterations and computational time at nearby optimal schedule 

compared to heuristics based on dispatching and local searches. Hybrid permutation-coded 

evolutionary approach - confirming the requirement of combining steady state genetic schedules with 

adjacent pairwise interchange procedure – demonstrates the robustness of genetics and the average 

gain in computational effort by comparing the fitness evaluation strategies inside GA by Singh, 

(2010). Another method used for SMETP is memetic approach, presented by Franca et al., (2001). 

Greedy Randomized Adaptive Search Procedure (GRASP) was used in Norgueira et al., (2014). 

Heuristics based on mathematical programming was proposed by Della Croce et al., (2014), to obtain 

better performances for the large-scale problems. A combination of local search heuristics, using 

dispatching and hill climbing and simulated annealing, with evolutionary algorithm was proposed by 

M’Hallah, (2007), where it was clear the role of hybridization as to improve the solution quality at a 

reasonable cost in terms of run time. Another hybrid approach was presented by Sundar and Singh, 

(2012). They proposed a local search approach combined with Artificial Bees Colony (ABC). The 



  

results are reported based on the optimum solutions presented by Valente et al., (2006). The authors 

demonstrated the superior performances of ABC on quality of solution and convergence rate on the 

instances with 50, 75 and 100 jobs, compared to GA results.  However, the convergence performance 

was slower for the instances greater than 250 jobs. Another approach is based on Tabu Search and 

Simulated Annealing and Neighbourhood Search, proposed by Almeida and Centeno, (1998), which 

was utilised the random generated SMTEP instances. Finally, complete survey of heuristic 

methodologies for solving SMETP was reported in the work of Gupta and Sen, (1983); Sen et al., 

(1996); Chen, (1996); Su and Chang, (1998); Gordon et al., (2002); and Schaller, (2007). 

This paper demonstrates the performances of an enhanced hybrid version of the Bees Algorithm, 

called Genetic Bees Algorithm (GBA). Since the basic Bees Algorithm may have limitation to 

converge the optimum solution in the desired time scale by Yuce et al., (2014a). The genetic 

algorithm operators like crossover and mutation operators are included in order to increase 

convergence rate by increasing the ability of the global search, the details of the proposed algorithm 

are defined in section 4.2. Similar approach is proposed by Ming et al., (2011) to increase the 

efficiency of the Bee Colony Algorithm, they have utilised GA to increase the local search capability 

of the Bee colony algorithm. However, the main weakness of the BA is the global search stage, 

therefore, this paper focuses on the enhancements of the global search stage. The validation and 

performances of the proposed approach - because of the easily access to the database and optimum 

solutions- are evaluated in the test data, presented by Biskup and Feldman, (2001). However, there are 

still other data sets available to be utilised in the literature presented by Valente et al., (2006), Singh 

(2010); and Sundar and Singh, (2012). Notwithstanding, results will be benchmarked with other meta-

heuristics from the major class of pure and hybrid approaches. It has been assumed that restrictive and 

relaxed common due date exists. For each job, individual earliness and tardiness completion time 

penalties are given in advance. Validation of the proposed meta-heuristic is presented in terms of 

computational time, effort and quality of solutions by means of the upper bound as used by Feldman 

& Biskup, (2003); Hino et al., (2005); and as reported in the GA+ greedy local search and SA + 

greedy local search of Lin et al., (2007a). 



  

3. THE SINGLE MACHINE SCHEDULING PROBLEM 

The optimal allocation of scarce resources to certain activities is the objective of the scheduling. 

Scheduling problems become sequence whenever constraints regarding priorities are not included 

(Carlier, 1982). A single machine scheduling problem is a well-studied optimisation problem where a 

set of n-jobs with given deterministic processing times Ti and due date, have to be processed on a 

machine according to some constraints. The goal is to find a schedule for the n-jobs which minimizes 

the sum of all the penalties occurring due to the constraints. This is a challenging optimisation 

problem and therefore it is chosen to test the performance of the proposed GBA. 

In the SMETP, resources are commonly referenced as machines Mk that can perform at most one 

activity - one job Ji i.e., an open or close sequence of tasks i with time Tijk (i.e., the time T of a task i 

as part of the job j which requires the resource k) - at any time t.  

Ubiquity of task is not enabled. All the information that defines a problem instance is known in 

advance. This characterises a deterministic scheduling as part of the combinatorial optimisation. In the 

following part, it is presented the 3-parameter classification introduced by Graham et al., (1979). 

Then, SMETP is formally classified as n/1//ET (French, 1982). 

Let:  J= {J1, J2, …., Jj-1, Jj, Jj+1, …, Jn} the set of the n jobs existing inside the system to be 

processed without interruption on a single machine Mk (i.e., k here is equal to 1) that can handle only 

one job at a time. Each job Jj is available at time zero, requires a positive process time Tjk and ideally 

must be completed exactly on a specific constant due date D proportionally to the amount of �� =

	∑ ����
�	
   and common for all jobs. 

Penalties occur every time, the job j is completed before or early the fixed due date D. 

The common due date D on machine k (i.e., Dk) is calculated by: 

 

	�� = 	�
����∑ ����
�	
 	× ℎ�  (1) 

 

where round[X] gives the biggest integer, which is smaller than or equal to X; parameter h is used to 

calculate more or less restrictive common due dates.  



  

     An early Ekj=max (0, Dk-Tjk) or a tardy Rkj=max (0, Tjk-Dk) occurs if the job j is not completed 

exactly on the specific assigned Dk. The possibility to accumulate Rkj – whatever its amount is 

preferable to Ejk because of its excessive penalties - in non-restrictive cases is allowed in order to get 

optimality. The objective is therefore to find a processing order for the n jobs that minimises the 

following objective: 

��� = ∑ ������� +��������
�	
   (2) 

 

where αjk and βjk are respectively the earliness and tardiness non-negative penalties for the job j as 

processed on machine k and they constitute the deterministic input for the benchmarks. Thus, an 

optimal solution to unrestricted SMETP (h ≥ 0.4) may exist if no idle time in scheduling occurs and 

the starting time of the first job could not start at the time zero (Cheng and Kahlbacher, 1991). Close 

jobs are necessary but not a sufficient condition for the optimisation. Here, the complexity is related 

more to the arbitrary starting date than to the close sequence of jobs. The restrictive form of SMETP 

is also much more complex than the unrestricted form, given the NP-hard nature of the problem (i.e., 

excluding the optimum schedule, a priori when the n>20) (Du and Leung, 1990). In order to generate 

data tests, a set of n jobs with deterministic processing times Tjk and a common due date Dk are 

given. In this study, seven benchmark data files are utilised with different job numbers, n, which 

are equal to 10, 20, 50, 100, 200, 500, 1000 jobs, and under different restricted (h = 0.2 and h = 0.4) 

and unrestricted (h = 0.6 and h = 0.8) constraints with due date (Dk) on one machine (k=1). Each job 

should be processed on one machine, further, the individual earliness Ej and tardiness Tj penalties are 

given for each job, which will be included in the objective function, if a job is finished before or after 

the common due date D1. 

4. THE ENHANCEMENT OF THE BEES ALGORITHM WITH GENETIC OPERATORS 

4.1 THE BEES ALGORITHM  

A colony of honey bees exploit, in multiple directions simultaneously, food sources in the form of 

                                                        
1
 Common due date scheduling, OR-Library, Available at: 

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/schinfo.html [Accessed on 2nd April 2014]. 



  

antera with plentiful amounts of nectar or pollen. They can conduct this foraging exploitation up to 11 

kilometres far from their hives on multiple directions (Gould, 1975). Flower patches are marked based 

on a virtual stigmergic approach – sites with higher nectar content should be visited by more bees 

(Crina and Ajith, 2006). The foraging strategy starts with scout bees, which represent a percentage of 

the beehive population. They wave randomly from one patch to another. Returning at the hive, those 

scout bees deposit their nectar or polled and start a recruiting mechanism called waggle dance (Von 

Frisch, 2014). Bees, stirring up for discovery, flutter from one to one hundred circuits with a waving 

and returning phase.  

The waving phase contains information about direction and distance of flower patches. The 

waggle dance is used as a guide or a map to evaluate merits of explored different patches and to 

exploit better solutions. After waggle dancing on the dance floor, the dancer (i.e., the scout bee) goes 

back to the flower patch with follower bees that are waiting inside the hive. A squadron moves 

forward into the patches. More follower bees are sent to more promising patches, while harvest paths 

are still explored but not in the long term. This behaviour represents a swarm intelligent approach 

(Yuce et al., 2013), which allows the colony to gather food quickly and efficiently with a recursive 

recruiting mechanism (Seeley, 2009).  

The Bees Algorithm approach is inspired to such a natural communication mechanism. The Bees 

Algorithm (BA) is a type of Swarm Based Optimisation Technique (SBOT) mimicking the foraging 

behaviour of honey bees (Pham et al., 2005; Fera et al., 2013; and Yuce et al., 2014a). The 

algorithm conducts a global and a local search process to determine the global optimum solution. 

According to literature, most of the optimisation algorithms are not capable to utilise both of these 

search process, they utilise either a local search or a global search individually. Hence, the Bees 

Algorithm can search the entire solution space randomly and focuses on the promising regions. The 

global search is conducted by scout bees which fly out from the hive in search of potential flower 

patches randomly. The returning scout bees communicate the following information to the recruit 

worker bees by means of the waggle dance. Information includes the direction of the source, the 

distance of the source from the hive and the quality of the food source (Gould 1975; and Von Frisch, 

2014).  



  

This is indicated by the orientation of the bee with respect to the sun, the duration of the dance, 

and the frequency of the waggles in the dance and buzzing respectively (Huang, 2008). This will 

influence the number of recruited worker bees which will carry out a local search. Over time, old 

patches which have been exploited fully by worker bees will be abandoned and new patches 

explored by scout bees for further exploitation. This process continues in an iterative manner until a 

stopping criteria is met. The process will become random if it is dominated by global search and, on 

the other hand, run the risk of getting stuck in a local optimum if the focus is on local or 

neighbourhood search. Hence a good optimisation algorithm must conduct a thorough local search 

while maintaining the global search perspective. The BA due to its inherent nature, is expected to get 

stuck in local optima and in order to overcome this problem the proposed a hybrid Genetic Bees 

Algorithm (GBA) relies on two extra components to modify or evolve the search similar to that of 

Genetic Operators. These components are the Reinforced Global Search frame and a Jumping 

Function.  

The standard Bees Algorithm first developed by Pham et al., in 2005 requires a set of parameters 

as reported in table 1: number of scout bees (ns), number of elite sites selected out of ns visited sites 

(ne), number of best sites out of ne selected sites (nb), number of bees recruited for the best nb sites 

(nrb), number of bees recruited for the other nb-ne selected sites (nrb), initial size of patches (ngh). 

According to the flowchart in Fig. 1, the BA has the following steps: the first step is placing the ‘ns’ 

scout bees on the search space, and then in the next step, fitness values of the visited patches are 

evaluated. Subsequently the best patches with respect to their fitness value are selected and then split 

into two groups containing more scout bees to the elite patches ‘ne’, and less scout bees to the non-

elite best patches ‘nb–ne’. The next step covers the neighbourhood search in the patches given 

beforehand, and so according to the neighbourhood search, the patches’ fitness values are evaluated. 

Then, the remainder bees, which are created in initial population ‘ns-nb’, will be recruited for the 

random search to find better random solutions. Finally, the random patches’ fitness values are 

evaluated and this process continues until one of the stopping criteria is met: the solution found is 

equal to the real optimum value, the number of iterations reaches the pre-set value, if there is no 

significant improvement in the consecutive solutions found, e.g. stuck in local minima. 



  

Table 1 The initial parameters of the BA. 

ns Scout bees 

nb Best sites 

ne Elite sites (with ne<nb) 

nre Bees in elite sites 

nrb Bees in best sites 

ngh Initial size of patches 

Itr Iterations 

 

 

Fig. 1 The flow chart of the basic Bees Algorithm (BA). 

4.2 THE BEES ALGORITHM REINFORCED WITH GENETIC OPERATORS 

The weakness of the BA is associated with its inability to diversify the global search in order to 

explore the solutions space when the search algorithm reaches a plateau or local minima. As shown 

in Fig. 2, the GBA keeps the same structure as BA with the addition of reinforced global search and 



  

jumping function strategies. The reinforced search utilises a genetically mutated approach if there is 

no optimum solution with the basic BA. In addition, the jumping function utilises single point 

crossover, multipoint crossover, mutation and randomisation operators step by step if there is no 

improvement with previous operators and strategies. The pseudo-code of hybrid GBA is given in 

Fig. 3. 

 

Fig. 2 The flow chart of Genetic Bees Algorithm (GBA). 

4.2.1. Reinforced global search strategy 

The reinforced global search strategy is one of the proposed strategy in this work which 

utilises the mutation operator of the genetic algorithm to enhance the BA. In the proposed GBA, 

the global search is enhanced by introducing a genetic mutation operator. This operator is activated if 

the 50% of the initial population remains the same using the basic BA. The proposed strategy 



  

implements the mutation operator on the locations which are the non-best ns-nb patches. The main 

idea is to generate a best solution from inefficient solutions through the mutations. Considering the 

analogy between the bee and the flower patch, generating a best solution is equivalent to generating 

the best bee, which is called a Superbee. The aim of the reinforced global search strategy is to create 

ns-nb Superbees to replace the bees in the initial population. In the reinforced global search strategy 

starts, the length of the mutated string contains the string value of at least half the dimension of the 

original solution vector. Thus, the mutated solution preserves at least 50% of the original solution. 

Furthermore, the beginning of the mutation can start from any point of the solution vector, randomly. 

If the algorithm finds a solution close to the optimum, the solution will increase the convergence rate 

of the algorithm, However, the operator of the reinforced global search strategy is conceived in order 

to generate offspring from the current population starting from elitism but then applying combination 

between crossover and mutation operators (Gen and Cheng, 1997).  In this procedure, the best 

individuals are obtained to the date that are preserved, so that the algorithm can report, after applying 

reinforced global search, the best value is identified. This is, as per literature, a commonly used 

approach (Lin et al., 2007a). The quality of each solution is measured by the fitness and the search 

space proceeds until the termination condition or enhancement is met.  

However, if there is no improvement with this strategy, then the second strategy function, jumping 

function strategy, will be activated until an optimised solution is found. In the following section, the 

details about the jumping function strategy is presented. 

4.2.2. Jumping function strategy 

In complex NP-hard type functions, the elite global search may not be enough to find the optimum 

solution, this is due to the lack of complete randomness, as stated previously.  Moreover, if the 

optimum solution is not in the vicinity of one of the existing locations, the BA is not able to converge 

to this solution without exploring other promising solutions. Hence, another function, called, jumping 

function strategy is proposed in this section using the GA’s crossover (single-point and multi-point), 

mutation and randomisation operators which is anticipated to increase the strength and randomness of the 

existing solution if there is no solution with the reinforced global search strategy. The jumping function 



  

aims to enhance the global search of the BA and includes initially a crossover operation as stated in 

Fig. 2 (i.e., single-point and multi-point crossover are implemented), then a mutation operation and 

finally a randomization operation with consecutive evaluations. The main steps of the proposed 

strategy are one-point crossover, multi-point crossover, mutation operator, and randomization as 

shown in Fig. 2. The main assumption of the jumping function is that if promising solutions are 

found, the global optimum can be achieved faster solution with these solutions. To explain steps of 

the jumping function, an example is selected as shown in Fig. 4.  The selected example is presented 

for the test instance of 20 jobs under highly restricted condition (common due date = 43).  

 

Fig. 3 The pseudo code of the GBA. 

Step 1. 1. Parameters setting: ns,ne,nb,nre,nrb,ngh,itr. 
Step 2. 2. Data set loading: load dataset 
Step 3. 3. Initial bees population generating: X=Xrandom; job(ns, njob); 

4. Fitness function evaluation: 

 F=funObj(ns,C, njob, ptime, ddate, X, data) 
5.  Ascending sorting of the values of F: [Fsorted, Xsorted]=sorting(F, X, ns) 

Step 4. 6. For 1< q <itr 

7.   For 1< i <ne 
8.   Generating, for each solution i, the neighborhood matrix MATRscout 

9.   Randomly allocating of the nre bees to the solutions of MATRscout 

10.   Generating a matrix X1 with the nre solutions related with the bees 

11.   Evaluating X1   → F1 = funObj(…) 
12    Sorting (X1  e F1) →[F1 , X1] = sorting (F1 , X1 , ne) 
13.    If the first element of F1 is minor than the i-th element of Fsorted 
14.     updating Fsorted and Xsorted  with the new found solution 
15.    End 
16.  End 
17.  For (ne+1)< i <nb 

18.   Generating, for each solution i, the neighborhood matrix MATRscout 
19.   Randomly allocating of the nrb bees to the solutions of MATRscout 

20.   Generating a matrix X2 with the nre solutions related with the bees 
21.   Evaluating  X2  →   F2 = funObj(…) 
22.   Sorting (X2  e F2) → [F2 , X2] = sorting (F2 , X2 , ne) 
23.    If the first element of F2  is minor than the i-th element of Fsorted 
24.    updating Fsorted and Xsorted  with the new found solution 
25.    End 
26.  End 

Step 5. 27.  For nb< k <ns 

28.  Generating indexes, which contains the indexes of the elements to be mutated 
29.  Mutating the best solution GX= mutation (Xsorted(:, 1), indexes) 
30.  Evaluating GX using FX=funObj 
31.  If GX  is better than Xsorted(:, 1) 
32.    Replacing → Xsorted(:, k)=GX 

33.    Replacing → Fsorted(:, k)=FX 
34.  End 

35.  End 
36.  Sorting the population of Xsorted and the vector Fsorted 

Step 6.37.  If for 10 iterations the best solution Xsorted(:, 1) does not change 
38. While NEWsol is worse than Xsorted(:, 1) or whilestop is not met 
39.  Employing jumping to Xsorted(:, 1) obtaining NEWsol 

40.  Evaluating NEWsol 
41.  End 
42.  If NEWsol is better than Xsorted(:, 1) 
43.  Replacing Xsorted(:, 1) with NEWsol  and updating Fsorted(1, 1) 

44.  End 
45.  End 

46. End 



  

 

Fig. 4 The selected example to demonstrate the jumping function strategy. 

 According to the Fig. 4, the row starting with j denotes the job number, tj is the process time for the 

job j, the row starting with αj symbolizes the earliness, the row starting with βj denotes the tardiness, 

and the row start with dj denotes the common due date of the job j. 

A) Single-point crossover operation 

This operator is the first stage of the jumping function strategy. The operator activates this stage if 

there is no solution with the reinforced global search strategy which utilises only the mutation 

operation.  This operation starts with the random selection of two parent job string from the solution 

space, and the random crossover distance which can be at most the half length of the job string (α% 

exchange< 50%). The process will continue to generate two children chromosomes from their parents 

by the job string exchange between the parent chromosomes. The child chromosome will be accepted 

if the fitness results are better than any parent chromosome and other child chromosome. To illustrate 

this process, an example is presented in Fig. 5. According to this figure, two parent chromosomes are 

selected as S and T with 4401 and 4498 fitness values, and a random crossover distance is found as 

30% (from job 1 to job 6). After the gene exchanges, the child chromosomes are found as ST1 and 

ST2 with the fitness values of 4494 and 4406, respectively. Based on this figure, the fitness value of 

ST2 job string is found better than parent T and child ST1, hence, the job string of the parent T is 

replaced with the job string of ST2 in the gene pool. Hence, the further computation will be conducted 

with the chromosomes T and ST2. 

  

Parent Chromosomes 



  

Fig. 5 An example to demonstrate the single point crossover operation.  

B) Multi-point crossover operation 

This operator is the second GA operators utilised in the jumping function strategy which performs 

if the optimum solution or the improvements in both parent chromosomes are not achieved at the 

previous step. The strategy implemented on the parent chromosomes. It is proposed two points 

crossover operation approach. The process initiates with the parent chromosome selection. The next 

stage is to determine the random crossover distances string (α1% and α2% exchanges, and α1% + 

α2% < 50%). Based on these two information, the child chromosomes can be generated. To 

demonstrate the proposed multi-point crossover operation, the previous example will be utilised. As 

stated in the previous stage that one of the parent chromosome was updated. Hence, the process will 

be implemented on the updated parents which are chromosomes S and ST2. The second step is to 

determine the random crossover distances. The first random crossover distance is found to be started 

from forth string with 15% ending gene point, (sixth gene) and second random crossover distance is 

found as fifteenth gene in the string with 30% ending gene point (twentieth gene) as shown in Fig. 6. 

According to Fig. 6, the strings of the child chromosomes are found as identical with the parents 

hence there is no update in the solution pool. Hence the next operation will be utilised. 
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Fig. 6 An example to demonstrate the multi point crossover operation.  

C) Mutation operation 

The mutation operation is another operation to find the optimum solution with the genetically 

mutated genes. The process starts with the selection of the original chromosome. Following to the 

chromosome selection, the mutation rate and the selection of the gene strings which need to be 

mutated need to be found. The process is completed with the gene updates and the updated 

chromosomes evaluation stages. To demonstrate the mutation operation, one of the parent 

chromosome, which performed the worst in the crossover operation, will be utilised, which is the 

chromosome ST2. The mutation rate is found as 15% which is equal to three genes in the 

chromosome. These three genes are found as genes 7, 8 and 10. A random mutation exchange is 

determined between these genes as following: the gene 7 becomes gene 8, the gene 8 becomes gene 

10 and the gene 10 becomes gene 7 with the random allocations.  After the gene exchange the fitness 

value of the new chromosome is found as 4501, as shown in Fig. 7, which is higher than the original 

gene, hence, this chromosome is ignored. 

 

Fig. 7 An example to demonstrate the mutation operation.  

D) Randomisation operation 

The final operators in the jumping function strategy is the randomisation operator which aims to 

find a better or an optimum solution by generation a new chromosome. According to the fitness 

 

  

 

Parent Chromosomes 

Child Chromosomes 



  

evaluation stage, the newly generated chromosome either will be kept or deleted compare to the 

weaker parent chromosome. To demonstrate the process, a newly generated chromosome is found as 

ST2R as shown in Fig. 8. Based on the fitness evaluation the fitness (objective) value is found as 4394 

(it is an optimum solution). Hence, the chromosome ST2 will be replaced to the chromosome ST2R. 

This process will continue along side with the basic BA until the optimum solution is found. 

 

 

 

Fig. 8 An example to demonstrate the randomisation operation.  

5. EXPERIMENTAL ANALYSIS AND RESULTS 

5.1 TUNING PHASE AND MAIN PERFORMANCES 

The numerical experiments used the set of 280 test problems proposed by Biskup and Feldman, 

(2001), and available on internet at (http://people.brunel.ac.uk/~mastjjb/jeb/orlib/schinfo.html ). The 

problem set is divided by size into seven groups having n= 10, 20, 50, 100, 200, 500, 1000 jobs, 

respectively with each category containing ten instances (in# is the instance amount) to be tested. The 

values of h= 0.2, 0.4, 0.6, 0.8 classify the problem as less or more restricted against common due date 

D. The proposed GBA was implemented in Intel
®
 Core™ i7 CPU @ 2.93GHz. Since the Bees 

Algorithm is a stochastic based method, it generally requires reporting an average amount while 

considering percentage offset (% Offset) over different runs to have a meaningful result. 

The advantage of GBA over BA is due to its power to avoid getting stuck in local minima of the 

objective function values. In other words, GBA performs Reinforced Global Search and Jumping 

 



  

Function strategies, in order to unblock the search and venture into new space when it gets stuck in 

local minima. As shown in Fig. 9 and 10, whenever both algorithms utilise the same initial parameters 

set for the number of patches, the number of elite and the non-elite best patches, there is a 

considerable gain in quality of solution at a fixed iteration number. However, the convergence 

performance of the both algorithms are totally different. Fig. 9 and 10 demonstrate the comparison of 

performances between the GBA and the basic BA in a constrained test problem (h=0.2) from Biskup 

and Feldman, (2001) at the optimum for SMETP. The proposed Reinforcing Global Search and 

jumping function strategies increase the capability of exploration and exploitation of the basic BA. 

While the GBA reaches the optimum value after 10 iterations, the basic BA needs 4000 iterations (on 

the same test problem under the same algorithm parameters).  

 

Fig. 9 The performance of the BA for n=10, h=0.2 and the optimum value of 1936 (tuning under 

parameters: ns=50; nb=5; ne=3; nrb=5; nre=5; ngh=5. 

 

Fig. 10 The performance of the GBA for n=10, h=0.2 and the optimum value of 1936 (tuning under 

parameters: ns=50; nb=5; ne=3; nrb=5; nre=5; ngh=5). 



  

The grater population size influences on exploitation in solution while gaining in exploration of the 

domain. However, the larger colony size causes the longer processing time to achieve the optimum 

solution (following a non-polynomial trend). As a matter of fact, a relation between computational 

time and number of iteration to an optimum set can be constructed as shown in Fig. 11, evolving 

linearly with the test data. In condition of highly restricted scheduling instances (ℎ	 � 0.4), the GBA 

is capable of finding the optimum solution in small size (n<100) of instances with the lower 

computational effort. Time for a stable solution for benchmark instances is less or around seconds 

(Feldmann and Biskup, 2003). In almost all the highly-restricted instances, the GBA shows superior 

performances compared to the meta- heuristics proposed by Biskup and Feldman, (2001), and 

comparable with the Upper Bound of the literature (Lin et al., 2007a). However, for value of h>0.4 

and number of jobs higher than 200, given the NP-hard nature, the problem required a higher 

computational effort (see Fig. 11).  

 

Fig. 11 Computational time in seconds and Iteration to optimum for different SMETP instances under 

varying h-constraint for values as reported in Biskup and Feldman, (2001). 

      In Fig. 11, the referral value of calculation time is presented in seconds and number of iterations 

which the GBA achieved its best solution in the specific test problem of the restricted class (this mean 

convergence to a fixed optimal amount). In order to tune the GBA, an approach based on the analysis 

of the % effort= (Ioptimum/TI) x 100 is utilised, where Ioptimum is the iteration at which the algorithm 

achieved its best solution over ten runs for a specific test problem and TI is the computation time.  

     The percentage effort (%effort) as defined in Nearchou, (2008) is remarkably higher (more than 



  

30%) for the proposed GBA in comparison with the DE approach of Nearchou, (2008). %effort is then 

reported as average value among ten runs according to Bonferroni correction (Fig. 12). Results show 

that when the problem size increases, the time to reach an optimal solution increases even though the 

number of iterations remains almost constant (Fig. 11). Moreover, %effort seems to decrease when 

GBA parameters increase. This requires analysis of interactions between parameters under different 

case study.  This behaviour is almost similar for the basic BA. 

     Interaction between parameters was evaluated based on Taguchi orthogonal arrays (Taguchi, 1986; 

Lambiase and Miranda 2003; Yuce et al., 2014b) and the corresponding results are shown in reports 

of Fig. 12. Each line corresponds to a different data test (i.e., n= 10, 20, 50, 100, 200 with h=0.2 - 

mean across ten instance of each class) and reported as percentage efforts (%efforts) according to 

various configurations. The average values of ten repetitions are reported in Fig. 13 and 14. A larger 

population size makes the algorithm working more slowly, but a better solution will eventually be 

achieved. However, the correct tuning depends on the problems being solved. The optimisation 

computation time requires higher %effort as the problem increases in size and the values of 

parameters increase. There is an evident optimal value of ngh around 10 that can be used for all tests, 

while an optimal value of nre around 12 can be used. There is a suggest value of nrb around 8. The 

influence in terms of %effort of nrb and nre is remarkable between tests as its correspondent value 

increases. In general, the remarks in %efforts don’t demonstrate the evidence for ns and nb and ne 

values of 100, 50 and 8, respectively. These considerations are set in GBA for outputs as per the 

results section. 
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d) 

 
e)  

f) 

Fig. 12 Percentage effort for different values of ns (a), nb (b), ne (c), nrb (d), nre (e), ngh (f) for 

various test data. h=0.2. 

     For the restricted class n/1/ET large test instance, optimal performances can be achieved in a 

computational time around 45 minutes (mean across h≤ 0.4 value for n= 1000) that remains lower 

compare to the DE approach (Nearchou, 2008). However, the GBA could suffer of getting stuck in 

local optimum when h>0.4. For this reason, tuning become fundamental for the performances of the 

GBA, using a Reinforcing Global Search strategy - it needs to be set on a great ns amount - and 

Jumping Function strategy which is based on limited Iteration (iteration). The GBA, as explained 

above, manifests better performance in terms of exploitation of the domain, but suffers in local 

exploitation, which sometimes requires continuous jumping in new patches. As a matter of fact, 

%effort is high when the GBA parameters assume low values as shown in Fig. 11 and therefore 

mutation and crossover need to be increased. 
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Fig. 13 The performance comparison of the BA (blue line) and the GBA (red line) under n=10  h=0.2; 

(tuning under parameters : ns=50; nb=5; ne=3; nrb=5; nre=5; ngh=5). 

 

Fig. 14 The performance comparison of the BA (blue line) vs.  GBA (red line) -  under n= 50  

h=0.2;(tuning under parameters : ns=50; nb=5; ne=3; nrb=5; nre=5; ngh=5). 

5.2 RESULTS 

The results obtained by the GBA, which are applied on the instances proposed by Biskup and 

Feldmann, (2001), are presented in Table 2, Table 3, Table 4 and Table 5. In particular, the 

computation results, concerning small and large size benchmark problems, obtained by the GBA, are 

compared to those obtained from the BA (under optimal tuning), the upper bounds from 

Feldmann and Biskup, (2003) meta-heuristics (Table 3, Table 4) and the existing meta-heuristics 

according to literature review (Table 4, Table 5). The comparison between approaches generated 

using different tunings, ten runs, at fixed h and 5000 iterations are reported in Table 2. 

 



  

Table 2 The BA vs the GBA for n= {10 & 20 &50 &100 & 200 & 500 & 1000} – average results 

of ten runs for h=0.2. Registered performance after 5000 iterations (tuning under parameters : 

ns=50;nb=5; ne=3;nrb=5; nre=5; ngh=5), * as optimum. 

 

 Iteration is the number iteration, UB as F&B is the upper boundary in Feldmann and Biskup, (2003). 

 

 The global performance of the GBA and the BA is reported by calculating the Percentage Offset (% 

Offset) under multiple runs. The fitness value presented in Table 2 is computed based on the 

difference between the Upper Bound cost function and the best solution found over different runs as 

described in Law and Kelton’s, (2000) with a Bonferroni correction due to multiple performance 

measures used by Quinzi, ( 2004). The relative convergence performance is presented in Table 2 

based on the following transformation: % Offset = 100 (FGBA-FBA)/FBA (the relative convergence 

between GBA and BA). The GBA used genetic operator with single-point and multi-point (two 

points) crossover operators proportionally to the size of test instances and related to its steady state in 

local optimum with uniform mutation (for a fixed-length with upper and lower bound according to the 

size of test instances and in incremental shape).  

Moreover, it is decided to evaluate relative comparison between GBA and BA when it is seeking for 

the global optimum. A wider comparison is set to evaluate the performance of GBA if compared with 

the BA approach. For all the instances, the GBA was settled according to a Taguchi analysis on main 

and integration effects with:  number of scout bees (ns) = 200; number of sites selected out of ns 

visited sites (nb) = 100, number of elite sites out of nb selected sites (ne) = 11, number of bees 

recruited for the best ne sites (nre) = 8, number of bees recruited for the other nb-ne selected sites 

(nrb) = 12, initial size of patches (ngh) = 2. Table 3 reports the percentage offset over different 

problem size n over in# and 4 restrictive factor h. Multiple runs (10 for each issue) have been 

computed and the best out of ten runs is used for comparison. This procedure follows as similar to 

methodology proposed by Hino et al., (2005). The GBA algorithm was implementing using the 

BA GBA UB as F&B BA GBA BA GBA

10 5000 5000 1936* 1,936 1,936 0,00% 0,00%

20 5000 5000 4,431 5,297 4,394 19.54% -0.84%

50 5000 5000 42,363 54,334 40,642 28.26% -4.06%

100 5000 5000 156,103 232,170 146,345 48.73% -6.25%

200 5000 5000 526,666 905,572 498,653 71.94% -5.32%

500 5000 5000 3,113,088 3,480,069 2,954,852 11.79% -5.08%

1000 5000 5000 15,190,371 16,143,289 14,054,930 6.27% -7.47%

n
 Iteration  Fitness Value % Offset



  

standard tuning approach. The GBA and the BA used the same set of parameters over iteration 

(Iteration). This may influence performance of the approach but it leads to a robust comparison 

between different test cases. The value of h in the header of the tables indicates the constrained shape 

of the instances. According to the experiments, GBA did not outperform over the BA in all instances.  

There are some particular instances where the BA gains better outcome - but it manifests a mean 

global outperformance. 

Table 3 The percentage offset (mean among 10 benchmarks under different restrictive factor (h) of 

the GBA and the BA. 

 

The results obtained with the proposed algorithm based on the time in minutes and Iteration at best - 

over 10 runs - (as per Table 3 and Table 5) are presented in Table 4. Computation time is about an 

hour for unrestricted large instances. This is longer in relation to what Lin et al., (2007a) presented in 

the Genetic Algorithm and Simulated Annealing with greedy local exploration search. These two 

approaches will be, hereafter, indicated as GA/SA + greedy local search. For the class of 1000 jobs, 

Lin et al., (2007a) obtained an average optimal value after 81.749 seconds, however, it is found as 

44.42 minutes using GBA. Notwithstanding, GBA - as per the results of Table 5 - obtains generally 

the best performance in terms of quality of results. 

    As it is highlighted in Table 4, that the GBA is quite fast for the instances up to 200 jobs, such as, 

the average CPU time is under 0.46 seconds for small size problem (n=10), and it is found that the 

average CPU time is under 37 seconds for problems with n≤50. The corresponding average CPU time 

reported by Feldman and Biskup (2003) are approximatively 87.3 seconds for n≤50 jobs.  

Table 4 Running times (minutes) on Intel
®
 Core™ i7 CPU @ 2.93GHz at the best out ten runs (mean 

among in#) for GBA.  



  

 

For an absolute remark and the relative comparison with other meta-heuristics, it can be observed in 

the work presented by Pham et al., (2011) where the data of Table 5 is partially originated. This 

approach enables to demonstrate the absolute presentation of the proposed solutions.  Each cell of the 

Table 5 represents the average percentage differences for the 10 instances (in#) of the corresponding 

size n and restricted factor h. It can be noted that the GBA outperforms the BA in all instances. The 

mean of difference in quality of computational solution is about -1.73% and the remarkable gain is 

obtained when the size of the problem increases. The GBA is showing an improvement in the solution 

for all the scenarios and the BA is manifesting not good quality of results whatever unrestricted are 

implemented (h>0.4). The application of heuristics in this context is justified by the quality of the 

solution compared with the Feldmann and Biskup, (2003) benchmarks but for the class of problem in 

issue running time is sometimes an open issue compare to the shortest one (GA/SA & Greedy Local 

Search).  

Table 5 The maximum deviation between heuristics according to each h value- best among ten runs, 

mean across in# - (Best results so far in the literature are reported in bold). 

 

 

Time Iteration Time Iteration Time Iteration Time Iteration Time Iteration Time Iteration Time Iteration

0.2 0.007 11 0.017 20 0.321 281 4.301 2152 3.457 1141 15.649 1831 39.463 2607

0.4 0.003 2 0.016 18 0.227 169 5.000 2078 3.936 936 19.717 2159 49.767 3275

0.6 0.007 5 0.231 140 1.504 1102 2.936 1554 16.055 1158 25.956 2629 34.264 4420

0.8 0.008 6 0.019 15 0.426 162 4.090 1359 5.215 1009 16.463 1962 54.203 3850

n

h  500 100010 20 50 100 200

DPSO TS GA HTG HGT DE
GA/SA & Greedy 

Local Search
BA GBA

10 0.00 0.25 0.12 0.12 0.12 0.00 0.00 0.00 -0.03

20 -3.84 -3.84 -3.84 -3.84 -3.84 -3.84 -3.84 -3.84 -3.84

50 -5.70 -5.70 -5.68 -5.70 -5.70 -5.69 -5.70 -5.70 -5.70

100 -6.19 -6.19 -6.17 -6.19 -6.19 -6.17 -6.19 -6.19 -6.19

200 -5.78 -5.76 -5.74 -5.76 -5.76 -5.77 -5.78 -5.78 -5.78

500 -6.42 -6.41 -6.41 -6.41 -6.41 -6.43 -6.43 -6.43 -6.43

1,000 -6.76 -6.73 -6.75 -6.74 -6.74 -6.72 -6.77 -6.76 -6.76

Average -4.96 -4.91 -4.92 -4.93 -4.93 -4.95 -4.96 -4.96 -4.96

n

h = 0.2

DPSO TS GA HTG HGT DE
GA/SA & Greedy 

Local Search
BA GBA

10 0.00 0.24 0.19 0.19 0.19 0.00 0.00 0.00 0.00

20 -1.63 -1.62 -1.62 -1.62 -1.62 -1.63 -1.63 -1.63 -1.63

50 -4.66 -4.66 -4.60 -4.66 -4.66 -4.66 -4.66 -4.66 -4.66

100 -4.94 -4.93 -4.91 -4.93 -4.93 -4.89 -4.94 -4.94 -4.94

200 -3.75 -3.74 -3.75 -3.75 -3.75 -3.72 -3.75 -3.75 -3.75

500 -3.56 -3.57 -3.58 -3.58 -3.58 -3.57 -3.58 -3.57 -3.57

1,000 -4.37 -4.39 -4.40 -4.39 -4.39 -4.38 -4.40 -4.35 -4.35

Average -3.27 -3.24 -3.24 -3.25 -3.25 -3.26 -3.28 -3.27 -3.27

n

h = 0.4



  

 

 

* DPSO: Discrete Particle Swarm Optimisation; TS: Tabu Search, GA: Genetic Algorithm; HTG: Tabu Search & Genetic 

Algorithm, HGT: Genetic Algorithm & Tabu Search; Differential Evolution; Genetic Algorithm or Simulated Annealing & 

Greedy Local Search; BA: Bees Algorithm, GBA: Genetic Algorithm & Bees Algorithm. 

 

 

     According to Table 5, the presented results summarise the performances among problems with 

different n values for each h value, considering the best (out of 10 runs and mean across in#) 

performance results as compared in Hino et al., (2005); Pan et al., (2006); Lin et al., (2007b); and 

Nearchou (2008).  Hino et al., (2005), proposed approaches include Tabu Search (TS), Genetic 

Algorithm (GA), Hybrid of Tabu search and Genetic algorithm (HTG) and Hybrid of Genetic 

algorithm and Tabu search (HGT).  Pan et al., (2006) reported the Discrete Particle Swarm 

Optimisation algorithm (DPSO). Nearchou, (2008) used Differential Evolution (DE) as the 

optimisation heuristic to solve this problem. Note that Feldman and Biskup, (2003) used five 

heuristics (namely, Evolution Search (ES), Simulating Annealing (SA), Threshold Accepting (TA) 

and TA with a back step (TAR)) and the best solution among heuristics is presented. Results 

illustrates performances in constrained instances (i.e., h ≤ 0.4), there is a good improvement (about - 

0.012) in gain compare to the best (in average the BA reported, if GBA is not included, the best 

among other) among the heuristics in mean - between classes - value. In highly constrained problems 

(h=0.2), there is generally a great difference (0.024) over the best results so far in the literature. Here 

GBA outperforms compare to other heuristics, if the large the population sizes (i.e., n≥ 100 test data) 

DPSO TS GA HTG HGT DE
GA/SA & Greedy 

Local Search
BA GBA

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

20 -0.41 -0.41 -0.28 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41

50 -0.24 -0.24 -0.19 -0.23 -0.23 -0.24 -0.24 -0.24 -0.24

100 -0.18 -0.15 -0.12 -0.08 -0.11 -0.17 -0.18 -0.18 -0.18

200 -0.15 -0.04 -0.14 0.26 0.07 0.20 -0.15 -0.15 -0.15

500 -0.11 0.21 -0.11 0.73 0.13 1.01 -0.11 -0.11 -0.11

1,000 -0.06 1.13 -0.05 1.28 0.40 2.79 -0.06 -0.05 -0.05

Average -0.16 0.07 -0.13 0.22 -0.02 0.45 -0.16 -0.16 -0.16

n

h = 0.8

DPSO TS GA HTG HGT DE
GA/SA & Greedy 

Local Search
BA GBA

10 0.00 0.10 0.03 0.03 0.01 0.00 0.01 0.00 0.00

20 -0.72 -0.71 -0.68 -0.71 -0.71 -0.72 -0.72 -0.72 -0.72

50 -0.34 -0.32 -0.31 -0.27 -0.31 -0.32 -0.34 -0.34 -0.34

100 -0.15 -0.01 -0.12 0.08 0.04 -0.13 -0.15 -0.15 -0.15

200 -0.15 -0.01 -0.13 0.37 0.07 0.23 -0.15 -0.15 -0.15

500 -0.11 0.25 -0.11 0.73 0.15 1.72 -0.11 -0.11 -0.11

1,000 -0.06 1.01 -0.05 1.28 0.42 1.29 -0.06 -0.05 -0.05

Average -0.22 0.04 -0.20 0.22 -0.05 0.30 -0.22 -0.22 -0.22

n

h = 0.6



  

are utilised, there is an average of 5.92 gain in performance. When problem size increases, the GBA 

performances such as exploration of domain and time to convergence worsen (even though 

comparable with other heuristics except) compare to the best solutions with the differential 

evolutionary approach presented by Nearchou, (2008). For the case of h>0.4, the GBA generally 

confirmed its good capability in solving the problem, however the gain is null compare to the bests 

found by other heuristics.  

     It is also worth to note that the search process starts with a randomly generated population set, as 

for the DE approach of Nearchou, (2008), however, results obtained by GBA are greatly better in 

terms of % effort (for the case of 1000 jobs the DE approach obtained optimum in the average among 

in# of 141 minutes with no comparable performances in terms of average quality of objectives). 

Moreover, another important property of GBA is not to have any priority rules to find the optimum 

solution. Since, there are three types of rules have been presented to achieve the optimum schedule in 

literature (Feldmann and Biskup, (2003); and Lin et al., (2007a)), these rules are as following: 1) the 

optimum schedule would not have any idle times between consecutive jobs, 2) the optimum schedule 

would not have an  increasing order of ratios (Tj/αj) for the jobs completed before and starting after 

due date (D), and 3)an optimum schedule will be achieved with either by starting the first job at time 

zero or by completing one job at the time D.  Most of the heuristics utilise these three priority rules to 

achieve the optimum schedule, however, there is no requirement for the GBA to find the optimum 

schedule. Since the random initialisations and additional genetic operators allow the algorithm to seek 

for the optimum schedule. To avoid the randomness of the quality of solution, the best result of the 10 

runs is considered during the experiments, as shown in Table 5. Since the usage of single solutions 

may not provide the robustness of the algorithm, however the average of the multi-results are the 

robust and trustable results.  Based on the results presented in Table 5, the performance of the GBA 

can be observed in Table 5 clearly, that the GBA provides more accurate results in average.  

Finally, as a matter of fact, when the class of the problem increases, the GBA is surpassed by the 

DPSO that has the advantage of minimum time convergence.  

6. CONCLUSION 



  

In this paper, a novel Genetic Bees Algorithm (GBA) is introduced. The proposed GBA is applied 

to solve the Single Machine Scheduling problem with earliness and tardiness penalties and the results 

illustrate that its performance is better in most cases when h value is lower. The GBA is a new 

evolutionary optimisation method that is used in a wide range of engineering applications. In this 

paper, it is utilised for the optimisation of single machine scheduling problem which is classified as 

the combinatorial optimisation problems.  

The algorithm is developed without inclusion of idle time between tasks, and this mainly affects 

performances of the approach in lightly constrained (h>0.4) jobs. In terms of exploitation and 

number of iteration, the proposed meta-heuristic achieves better performance compare to the upper 

boundary and the basic Bees Algorithm. The hybrid Genetic Bees Algorithm has proven to be more 

stable and robust than the basic Bees Algorithm.  

Possible direction for future researches include employing the same GBA approach in the case of 

multi-machine (m-machine) scheduling problem with general non-linear earliness and tardiness 

penalties to find an optimal solution in case of real test instances. 

Further, an initialisation procedure will also be introduced to improve the quality of solution in terms 

of percentage effort and in particular time for CPU time. 
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HIGHLIGHTS 

• Development of a robust hybrid stochastic optimisation algorithm using The Bees Algorithm and Genetic 

algorithm, 

• Genetic operator implementation in the global search side of the Bees Algorithm with a reinforced global search 

approach, 

• Implementation of the proposed hybrid optimisation algorithm on the Single Machine scheduling problem, 

• Evaluation of the proposed algorithm by comparing the results to the results of the other well-known stochastic 

optimisation algorithms. 

 


