23 research outputs found

    Hybrid Genetic Bees Algorithm applied to Single Machine Scheduling with Earliness and Tardiness Penalties

    Get PDF
    This paper presents a hybrid Genetic-Bees Algorithm based optimised solution for the single machine scheduling problem. The enhancement of the Bees Algorithm (BA) is conducted using the Genetic Algorithm's (GA's) operators during the global search stage. The proposed enhancement aims to increase the global search capability of the BA gradually with new additions. Although the BA has very successful implementations on various type of optimisation problems, it has found that the algorithm suffers from weak global search ability which increases the computational complexities on NP-hard type optimisation problems e.g. combinatorial/permutational type optimisation problems. This weakness occurs due to using a simple global random search operation during the search process. To reinforce the global search process in the BA, the proposed enhancement is utilised to increase exploration capability by expanding the number of fittest solutions through the genetical variations of promising solutions. The hybridisation process is realised by including two strategies into the basic BA, named as â\u80\u9creinforced global searchâ\u80\u9d and â\u80\u9cjumping functionâ\u80\u9d strategies. The reinforced global search strategy is the first stage of the hybridisation process and contains the mutation operator of the GA. The second strategy, jumping function strategy, consists of four GA operators as single point crossover, multipoint crossover, mutation and randomisation. To demonstrate the strength of the proposed solution, several experiments were carried out on 280 well-known single machine benchmark instances, and the results are presented by comparing to other well-known heuristic algorithms. According to the experiments, the proposed enhancements provides better capability to basic BA to jump from local minima, and GBA performed better compared to BA in terms of convergence and the quality of results. The convergence time reduced about 60% with about 30% better results for highly constrained jobs

    Artificial intelligence–assisted writing: a continuously evolving issue

    No full text

    Analysis of Dispersion of Carbon Nanotubes in <i>m</i>-Cresol

    No full text
    We analyzed the dispersion state of carbon nanotubes (CNTs) in m-cresol using dispersion stability analysis, optical microscopy, and UV-vis spectroscopy. The high dispersion stability of CNT/m-cresol dispersion was observed when it was sufficiently treated with ultrasonication. Despite the high dispersion stability, optical microscopy and UV-vis spectroscopy analysis of various CNT/m-cresol dispersions revealed that CNT bundles in m-cresol were not dispersed into individual CNTs. We also propose that the blue-shift of the G peak of CNTs in m-cresol in the Raman spectrum, which had been reported as evidence of the formation of the charge-transfer complex between m-cresol and CNTs, is rather attributed to the interference of m-cresol’s inherent peak at around 1600 cm−1

    Studying the Cable Loss Effect on the Seismic Behavior of Cable-Stayed Bridge

    No full text
    As the demand and construction of cable-stayed bridges have increased, research on the safety of cable-stayed bridges in the event of natural disasters such as fires and explosions is actively being conducted. If a cable-stayed bridge is damaged by an unexpected natural disaster or accident, it can cause serious traffic congestion and huge economic losses. This study evaluates the usability of the cable-stayed bridge in the event of cable damage. Additionally, seismic performance and the impact of the damage are evaluated by numerical analysis. To achieve this goal, the cable-stayed bridge is modeled using 3D BEAM elements and two-node cable elements. Then, the impact of the damage was evaluated by gradually damaging the cable. The deflection, axial force of the girder, and cable stress changes under far-field ground motion (El-Centro earthquake) were reviewed. A representative dynamic analysis program LS-DYNA was utilized for the numerical analyses. The results show that the loss of a small number of cables does not affect the usability of the bridge. However, if five or more cables are continuously lost, or if an earthquake occurs when cables are already lost, excessive deflections and changes in the girders’ axial forces can cause usability problems

    LOCAL COLLISION SIMULATION OF AN SC WALL USING ENERGY ABSORBING STEEL

    Get PDF
    This study evaluates the local damage of a turbine in an auxiliary building of a nuclear power plant due to an external impact by using the LS-DYNA finite element program. The wall of the auxiliary building is SC structure and the material of the SC wall plate is high manganese steel, which has superior ductility and energy absorbance compared to the ordinary steel used for other SC wall plates. The effects of the material of the wall, collision speed, and angle on the magnitude of the local damage were evaluated by local collision analysis. The analysis revealed that the SC wall made of manganese steel had significantly less damage than the SC wall made of ordinary steel. In conclusion, an SC wall made of manganese steel can have higher effective resistance than an SC wall made of ordinary steel against the local collision of an airplane engine or against a turbine impact

    STRUCTURAL TEST AND ANALYSIS OF RC SLAB AFTER FIRE LOADING

    Get PDF
    In the present study the behavior of fire and the residual strength of fire-ignited RC slabs are investigated by experimental tests and numerical simulations. The fire tests of RC slabs were carried out in a furnace using the ISO 834 standard fire. The load capacity of the cooled RC slabs that were not loaded during the fire tests was evaluated by additional 3 point bending tests. The influence of the proportion of PP (polypropylene) fibers in the RC slabs on the structural behavior of the RC slabs after the fire loading was investigated. The results of the fire tests showed that the maximum temperature of concrete with PP fiber was lower than that of concrete without PP fiber. As the concrete was heated, the ultimate compressive strength decreased and the ultimate strain increased. The load-deflection relations of RC slabs after fire loading were compared by using existing stress-strain-temperature models. The comparison between the numerical analysis and the experimental tests showed that some numerical analyses were reliable and therefore, can be applied to evaluate the ultimate load of RC slabs after fire loading. The ultimate load capacity after cooling down the RC slabs without PP fiber showed a considerable reduction from that of the RC slabs with PP fiber

    Evaluation of Seismic Performance and Effectiveness of Multiple Slim-Type Damper System for Seismic Response Control of Building Structures

    No full text
    This paper presents the evaluation of seismic performance and cost-effectiveness of a multiple slim-type damper system developed for the vibration control of earthquake excited buildings. The multiple slim-type damper (MSD) that consists of several small slim-type dampers and linkage units can control damping capacity easily by changing the number of small dampers. To evaluate the performance of the MSD, dynamic loading tests are performed with three slim-type dampers manufactured at a real scale. Numerical simulations are also carried out by nonlinear time history analysis with a ten-story earthquake excited building structure. The seismic performance and cost-effectiveness of the MSD system are investigated according to the various installation configurations of the MSD system. From the results of numerical simulation and cost-effectiveness evaluation, it is shown that combinations of the MSD systems can effectively improve the seismic performance of earthquake excited building structures
    corecore