231 research outputs found

    Antimicrobial and anti-inflammatory activity of chitosan-alginate nanoparticles: a targeted therapy for cutaneous pathogens.

    Get PDF
    Advances in nanotechnology have demonstrated potential application of nanoparticles (NPs) for effective and targeted drug delivery. Here we investigated the antimicrobial and immunological properties and the feasibility of using NPs to deliver antimicrobial agents to treat a cutaneous pathogen. NPs synthesized with chitosan and alginate demonstrated a direct antimicrobial activity in vitro against Propionibacterium acnes, the bacterium linked to the pathogenesis of acne. By electron microscopy (EM) imaging, chitosan-alginate NPs were found to induce the disruption of the P. acnes cell membrane, providing a mechanism for the bactericidal effect. The chitosan-alginate NPs also exhibited anti-inflammatory properties as they inhibited P. acnes-induced inflammatory cytokine production in human monocytes and keratinocytes. Furthermore, benzoyl peroxide (BP), a commonly used antiacne drug, was effectively encapsulated in the chitosan-alginate NPs and demonstrated superior antimicrobial activity against P. acnes compared with BP alone while demonstrating less toxicity to eukaryotic cells. Together, these data suggest the potential utility of topical delivery of chitosan-alginate NP-encapsulated drug therapy for the treatment of dermatologic conditions with infectious and inflammatory components

    Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector

    Get PDF
    Results of a search for H → τ τ decays are presented, based on the full set of proton-proton collision data recorded by the ATLAS experiment at the LHC during 2011 and 2012. The data correspond to integrated luminosities of 4.5 fb−1 and 20.3 fb−1 at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV respectively. All combinations of leptonic (τ → `νν¯ with ` = e, µ) and hadronic (τ → hadrons ν) tau decays are considered. An excess of events over the expected background from other Standard Model processes is found with an observed (expected) significance of 4.5 (3.4) standard deviations. This excess provides evidence for the direct coupling of the recently discovered Higgs boson to fermions. The measured signal strength, normalised to the Standard Model expectation, of µ = 1.43 +0.43 −0.37 is consistent with the predicted Yukawa coupling strength in the Standard Model

    Gene Transcription Changes in Asthmatic Chronic Rhinosinusitis with Nasal Polyps and Comparison to Those in Atopic Dermatitis

    Get PDF
    Asthmatic chronic rhinosinusitis with nasal polyps (aCRSwNP) is a common disruptive eosinophilic disease without effective medical treatment. Therefore, we sought to identify gene expression changes, particularly those occurring early, in aCRSwNP. To highlight expression changes associated with eosinophilic epithelial inflammation, we further compared the changes in aCRSwNP with those in a second eosinophilic epithelial disease, atopic dermatitis (AD), which is also closely related to asthma.Genome-wide mRNA levels measured by exon array in both nasosinus inflamed mucosa and adjacent polyp from 11 aCRSwNP patients were compared to those in nasosinus tissue from 17 normal or rhinitis subjects without polyps. Differential expression of selected genes was confirmed by qRT-PCR or immunoassay, and transcription changes common to AD were identified. Comparison of aCRSwNP inflamed mucosa and polyp to normal/rhinitis tissue identified 447 differentially transcribed genes at > or = 2 fold-change and adjusted p-value < 0.05. These included increased transcription of chemokines localized to chromosome 17q11.2 (CCL13, CCL2, CCL8, and CCL11) that favor eosinophil and monocyte chemotaxis and chemokines (CCL18, CCL22, and CXCL13) that alternatively-activated monocyte-derived cells have been shown to produce. Additional transcription changes likely associated with Th2-like eosinophilic inflammation were prominent and included increased IL1RL1 (IL33 receptor) and EMR1&3 and decreased CRISP2&3. A down-regulated PDGFB-centric network involving several smooth muscle-associated genes was also implicated. Genes at 17q11.2, genes associated with alternative activation or smooth muscle, and the IL1RL1 gene were also differentially transcribed in AD.Our data implicate several genes or gene sets in aCRSwNP and eosinophilic epithelial inflammation, some that likely act in the earlier stages of inflammation. The identified gene expression changes provide additional diagnostic and therapeutic targets for aCRSwNP and other eosinophilic epithelial diseases

    The Impact of eHealth on the Quality and Safety of Health Care: A Systematic Overview

    Get PDF
    Aziz Sheikh and colleagues report the findings of their systematic overview that assessed the impact of eHealth solutions on the quality and safety of health care

    Recent progress in genetics of aging, senescence and longevity: focusing on cancer-related genes

    Get PDF
    It is widely believed that aging results from the accumulation of molecular damage, including damage of DNA and mitochondria and accumulation of molecular garbage both inside and outside of the cell. Recently, this paradigm is being replaced by the “hyperfunction theory�, which postulates that aging is caused by activation of signal transduction pathways such as TOR (Target of Rapamycin). These pathways consist of different enzymes, mostly kinases, but also phosphatases, deacetylases, GTPases, and some other molecules that cause overactivation of normal cellular functions. Overactivation of these sensory signal transduction pathways can cause cellular senescence, age-related diseases, including cancer, and shorten life span. Here we review some of the numerous very recent publications on the role of signal transduction molecules in aging and age-related diseases. As was emphasized by the author of the “hyperfunction model�, many (or actually all) of them also play roles in cancer. So these “participants� in pro-aging signaling pathways are actually very well acquainted to cancer researchers. A cancer-related journal such as Oncotarget is the perfect place for publication of such experimental studies, reviews and perspectives, as it can bridge the gap between cancer and aging researchers

    Characteristic Evolution and Matching

    Get PDF
    I review the development of numerical evolution codes for general relativity based upon the characteristic initial value problem. Progress is traced from the early stage of 1D feasibility studies to 2D axisymmetric codes that accurately simulate the oscillations and gravitational collapse of relativistic stars and to current 3D codes that provide pieces of a binary black spacetime. A prime application of characteristic evolution is to compute waveforms via Cauchy-characteristic matching, which is also reviewed.Comment: Published version http://www.livingreviews.org/lrr-2005-1
    corecore