1,055 research outputs found

    Regional Income

    Get PDF

    How much training is needed in multiple-antenna wireless links?

    Get PDF
    Multiple-antenna wireless communication links promise very high data rates with low error probabilities, especially when the wireless channel response is known at the receiver. In practice, knowledge of the channel is often obtained by sending known training symbols to the receiver. We show how training affects the capacity of a fading channel-too little training and the channel is improperly learned, too much training and there is no time left for data transmission before the channel changes. We compute a lower bound on the capacity of a channel that is learned by training, and maximize the bound as a function of the received signal-to-noise ratio (SNR), fading coherence time, and number of transmitter antennas. When the training and data powers are allowed to vary, we show that the optimal number of training symbols is equal to the number of transmit antennas-this number is also the smallest training interval length that guarantees meaningful estimates of the channel matrix. When the training and data powers are instead required to be equal, the optimal number of symbols may be larger than the number of antennas. We show that training-based schemes can be optimal at high SNR, but suboptimal at low SNR

    High-rate codes that are linear in space and time

    Get PDF
    Multiple-antenna systems that operate at high rates require simple yet effective space-time transmission schemes to handle the large traffic volume in real time. At rates of tens of bits per second per hertz, Vertical Bell Labs Layered Space-Time (V-BLAST), where every antenna transmits its own independent substream of data, has been shown to have good performance and simple encoding and decoding. Yet V-BLAST suffers from its inability to work with fewer receive antennas than transmit antennas-this deficiency is especially important for modern cellular systems, where a base station typically has more antennas than the mobile handsets. Furthermore, because V-BLAST transmits independent data streams on its antennas there is no built-in spatial coding to guard against deep fades from any given transmit antenna. On the other hand, there are many previously proposed space-time codes that have good fading resistance and simple decoding, but these codes generally have poor performance at high data rates or with many antennas. We propose a high-rate coding scheme that can handle any configuration of transmit and receive antennas and that subsumes both V-BLAST and many proposed space-time block codes as special cases. The scheme transmits substreams of data in linear combinations over space and time. The codes are designed to optimize the mutual information between the transmitted and received signals. Because of their linear structure, the codes retain the decoding simplicity of V-BLAST, and because of their information-theoretic optimality, they possess many coding advantages. We give examples of the codes and show that their performance is generally superior to earlier proposed methods over a wide range of rates and signal-to-noise ratios (SNRs)

    Communication Over a Wireless Network With Random Connections

    Get PDF
    A network of nodes in which pairs communicate over a shared wireless medium is analyzed. We consider the maximum total aggregate traffic flow possible as given by the number of users multiplied by their data rate. The model in this paper differs substantially from the many existing approaches in that the channel connections in this network are entirely random: rather than being governed by geometry and a decay-versus-distance law, the strengths of the connections between nodes are drawn independently from a common distribution. Such a model is appropriate for environments where the first-order effect that governs the signal strength at a receiving node is a random event (such as the existence of an obstacle), rather than the distance from the transmitter. It is shown that the aggregate traffic flow as a function of the number of nodes n is a strong function of the channel distribution. In particular, for certain distributions the aggregate traffic flow is at least n/(log n)^d for some d≫0, which is significantly larger than the O(sqrt n) results obtained for many geometric models. The results provide guidelines for the connectivity that is needed for large aggregate traffic. The relation between the proposed model and existing distance-based models is shown in some cases

    Beamforming Codebook Compensation for Beam Squint with Channel Capacity Constraint

    Full text link
    Analog beamforming with phased arrays is a promising technique for 5G wireless communication in millimeter wave bands. A beam focuses on a small range of angles of arrival or departure and corresponds to a set of fixed phase shifts across frequency due to practical hardware constraints. In switched beamforming, a discrete codebook consisting of multiple beams is used to cover a larger angle range. However, for sufficiently large bandwidth, the gain provided by the phased array is frequency dependent even if the radiation pattern of the antenna elements is frequency independent, an effect called beam squint. This paper shows that the beam squint reduces channel capacity of a uniform linear array (ULA). The beamforming codebook is designed to compensate for the beam squint by imposing a channel capacity constraint. For example, our codebook design algorithm can improve the channel capacity by 17.8% for a ULA with 64 antennas operating at bandwidth of 2.5 GHz and carrier frequency of 73 GHz. Analysis and numerical examples suggest that a denser codebook is required to compensate for the beam squint compared to the case without beam squint. Furthermore, the effect of beam squint is shown to increase as bandwidth increases, and the beam squint limits the bandwidth given the number of antennas in the array.Comment: 5 pages, to be published in Proc. IEEE ISIT 2017, Aachen, German

    Space-time autocoding

    Get PDF
    Prior treatments of space-time communications in Rayleigh flat fading generally assume that channel coding covers either one fading interval-in which case there is a nonzero “outage capacity”-or multiple fading intervals-in which case there is a nonzero Shannon capacity. However, we establish conditions under which channel codes span only one fading interval and yet are arbitrarily reliable. In short, space-time signals are their own channel codes. We call this phenomenon space-time autocoding, and the accompanying capacity the space-time autocapacity. Let an M-transmitter antenna, N-receiver antenna Rayleigh flat fading channel be characterized by an M×N matrix of independent propagation coefficients, distributed as zero-mean, unit-variance complex Gaussian random variables. This propagation matrix is unknown to the transmitter, it remains constant during a T-symbol coherence interval, and there is a fixed total transmit power. Let the coherence interval and number of transmitter antennas be related as T=βM for some constant β. A T×M matrix-valued signal, associated with R·T bits of information for some rate R is transmitted during the T-symbol coherence interval. Then there is a positive space-time autocapacity Ca such that for all R<Ca, the block probability of error goes to zero as the pair (T, M)→∞ such that T/M=β. The autocoding effect occurs whether or not the propagation matrix is known to the receiver, and Ca=Nlog(1+ρ) in either case, independently of β, where ρ is the expected signal-to-noise ratio (SNR) at each receiver antenna. Lower bounds on the cutoff rate derived from random unitary space-time signals suggest that the autocoding effect manifests itself for relatively small values of T and M. For example, within a single coherence interval of duration T=16, for M=7 transmitter antennas and N=4 receiver antennas, and an 18-dB expected SNR, a total of 80 bits (corresponding to rate R=5) can theoretically be transmitted with a block probability of error less than 10^-9, all without any training or knowledge of the propagation matrix

    Representation theory for high-rate multiple-antenna code design

    Get PDF
    Multiple antennas can greatly increase the data rate and reliability of a wireless communication link in a fading environment, but the practical success of using multiple antennas depends crucially on our ability to design high-rate space-time constellations with low encoding and decoding complexity. It has been shown that full transmitter diversity, where the constellation is a set of unitary matrices whose differences have nonzero determinant, is a desirable property for good performance. We use the powerful theory of fixed-point-free groups and their representations to design high-rate constellations with full diversity. Furthermore, we thereby classify all full-diversity constellations that form a group, for all rates and numbers of transmitter antennas. The group structure makes the constellations especially suitable for differential modulation and low-complexity decoding algorithms. The classification also reveals that the number of different group structures with full diversity is very limited when the number of transmitter antennas is large and odd. We, therefore, also consider extensions of the constellation designs to nongroups. We conclude by showing that many of our designed constellations perform excellently on both simulated and real wireless channels

    The academic and industrial embrace of space-time methods

    Get PDF
    [Guest Editors introduction to: Special issue on space-time transmission, reception, coding and signal processing] Every episode of the classic 1966–1969 television series Star Trek begins with Captain Kirk’s (played by William Shatner) famous words : “Space: The final frontier….” While space may not be the final frontier for the information and communication theory community, it is proving to be an important and fruitful one. In the information theory community, the notion of space can be broadly defined as the simultaneous use of multiple, possibly coupled, channels. The notions of space–time and multiple-input multiple-output (MIMO) channels are therefore often used interchangeably. The connection between space and MIMO is most transparent when we view the multiple channels as created by two or more spatially separated antennas at a wireless transmitter or receiver. A large component of the current interest in space–time methods can be attributed to discoveries in the late 1980s and early 1990s that a rich wireless scattering environment can be beneficial when multiple antennas are used on a point-to-point link. We now know that adding antennas in a rich environment provides proportional increases in point-to-point data rates, without extra transmitted power or bandwidth
    corecore