10 research outputs found

    The tauopathy associated with mutation +3 in intron 10 of Tau: characterization of the MSTD family

    Get PDF
    Multiple system tauopathy with presenile dementia (MSTD) is an inherited disease caused by a (g) to (a) transition at position +3 in intron 10 of Tau. It belongs to the spectrum of frontotemporal dementia and parkinsonism linked to chromosome 17 with mutations in Tau (FTDP-17T). Here we present the longitudinal clinical, neuropsychological, neuroimaging, neuropathological, biochemical and genetic characterization of the MSTD family. Presenting signs were consistent with the behavioural variant of frontotemporal dementia in 17 of 21 patients. Two individuals presented with an atypical form of progressive supranuclear palsy and two others with either severe postural imbalance or an isolated short-term memory deficit. Memory impairment was present at the onset in 15 patients, with word finding difficulties and stereotyped speech also being common. Parkinsonism was first noted 3 years after the onset of symptoms. Neuroimaging showed the most extensive grey matter loss in the hippocampus, parahippocampal gyrus and frontal operculum/insular cortex of the right hemisphere and, to a lesser extent, in the anterior cingulate gyrus, head of the caudate nucleus and the posterolateral orbitofrontal cortex and insular cortex bilaterally. Neuropathologically, progressive nerve cell loss, gliosis and coexistent neuronal and/or glial deposits consisting mostly of 4-repeat tau were present in frontal, cingulate, temporal and insular cortices, white matter, hippocampus, parahippocampus, basal ganglia, selected brainstem nuclei and spinal cord. Tau haplotyping indicated that specific haplotypes of the wild-type allele may act as modifiers of disease presentation. Quantitative neuroimaging has been used to analyse the progression of atrophy in affected individuals and for predicting disease onset in an asymptomatic mutation carrier. This multidisciplinary study provides a comprehensive description of the natural history of disease in one of the largest known families with FTDP-17T

    Does manganese protect cultured human skin fibroblasts against oxidative injury by UVA, dithranol and hydrogen peroxide?

    No full text
    Reactive oxygen species (ROS) are involved in the mechanism of photoaging and carcinogenesis. Skin is endowed with antioxidant enzymes including superoxide dismutases (SOD): cytosolic copper zinc SOD and mitochondrial manganese SOD. The aim of our study was to estimate the protective effect of manganese against oxidative injury on cultured human skin fibroblasts. Dithranol, hydrogen peroxide and UV-A radiation (375 nm) were employed as oxidative stressors. The supply of manganese chloride produced an increase in cellular content of this element up to 24 fold without concomitant elevation of MnSOD activity. Nevertheless, manganese protects cells against two of the three ROS generating systems assessed, namely hydrogen peroxyde and UV-A. This protective effect depends on the concentration of manganese in the medium, 0.1 mM and 0.2 mM protect against UVA cytotoxicity, only 0.2 mM protects against H2O2 cytotoxicity

    2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction

    No full text
    corecore