1,150 research outputs found

    Aspekte der evolutionären Erkenntnistheorie in der Ernährungswissenschaft

    Get PDF

    UnterstĂĽtzung der Personalentwicklung mit ontologiebasiertem Kompetenzmanagement

    Get PDF

    Effect of magnesium supplementation on women's health and well-being

    Get PDF
    Abstract Magnesium is one of the most important micronutrients for the human body, is involved in many physiological pathways and is essential for the maintenance of normal cell and organ function. Magnesium deficiency in healthy individuals on a balanced diet is quite rare, but needs may change over the course of life. In women, in particular, there are various physiopathological conditions that may increase magnesium requirements, useful for both disease prevention and treatment. Indeed magnesium is well recognized in obstetrics and gynecology area. Magnesium use in women, both in terms of prevention and treatment, is extended to many health issues from PCOS to pre-menstrual syndrome, from pregnancy to menopause and beyond

    Water, electrolytes, vitamins and trace elements - Guidelines on Parenteral Nutrition, Chapter 7

    Get PDF
    A close cooperation between medical teams is necessary when calculating the fluid intake of parenterally fed patients. Fluids supplied parenterally, orally and enterally, other infusions, and additional fluid losses (e.g. diarrhea) must be considered. Targeted diagnostic monitoring (volume status) is required in patients with disturbed water or electrolyte balance. Fluid requirements of adults with normal hydration status is approximately 30–40 ml/kg body weight/d, but fluid needs usually increase during fever. Serum electrolyte concentrations should be determined prior to PN, and patients with normal fluid and electrolyte balance should receive intakes follwing standard recommendations with PN. Additional requirements should usually be administered via separate infusion pumps. Concentrated potassium (1 mval/ml) or 20% NaCl solutions should be infused via a central venous catheter. Electrolyte intake should be adjusted according to the results of regular laboratory analyses. Individual determination of electrolyte intake is required when electrolyte balance is initially altered (e.g. due to chronic diarrhea, recurring vomiting, renal insufficiency etc.). Vitamins and trace elements should be generally substituted in PN, unless there are contraindications. The supplementation of vitamins and trace elements is obligatory after a PN of >1 week. A standard dosage of vitamins and trace elements based on current dietary reference intakes for oral feeding is generally recommended unless certain clinical situations require other intakes

    Cross-Linking Strategies for Fluorine-Containing Polymer Coatings for Durable Resistant Water- and Oil-Repellency

    Get PDF
    Functional coatings for application on surfaces are of growing interest. Especially in the textile industry, durable water and oil repellent finishes are of special demand for implementation in the outdoor sector, but also as safety-protection clothes against oil or chemicals. Such oil and chemical repellent textiles can be achieved by coating surfaces with fluoropolymers. As many concerns exist regarding (per)fluorinated polymers due to their high persistence and accumulation capacity in the environment, a durable and resistant coating is essential also during the washing processes of textiles. Within the present study, different strategies are examined for a durable resistant cross-linking of a novel fluoropolymer on the surface of fibers. The monomer 2-((1,1,2- trifluoro-2-(perfluoropropoxy)ethyl)thio)ethyl acrylate, whose fluorinated side-chain is degradable by treatment with ozone, was used for this purpose. The polymers were synthesized via free radical polymerization in emulsion, and different amounts of cross-linking reagents were copolymerized. The final polymer dispersions were applied to cellulose fibers and the cross-linking was induced thermally or by irradiation with UV-light. In order to investigate the cross-linking efficiency, tensile elongation studies were carried out. In addition, multiple washing processes of the fibers were performed and the polymer loss during washing, as well as the effects on oil and water repellency were investigated. The cross-linking strategy paves the way to a durable fluoropolymer-based functional coating and the polymers are expected to provide a promising and sustainable alternative to functional coatings

    A geometry-based model for spreading drops applied to drops on a silicon wafer and a swellable polymer brush film

    Full text link
    We investigate the dynamics of spreading in a regime where the shape of the drop is close to a spherical cap. The latter simplification is applicable in the late (viscous) stage of spreading for highly viscous drops with a diameter below the capillary length. Moreover, it applies to the spreading of a drop on a swellable polymer brush, where the complex interaction with the substrate leads to a very slow spreading dynamics. The spherical cap geometry allows to derive a closed ordinary differential equation (ODE) for the spreading if the capillary number is a function of the contact angle as it is the case for empirical contact angle models. The latter approach has been introduced by de Gennes (Reviews of Modern Physics, 1985) for small contact angles. In the present work, we generalize the method to arbitrary contact angles. The method is applied to experimental data of spreading water-glycerol drops on a silicon wafer and spreading water drops on a PNIPAm coated silicon wafer. It is found that the ODE-model is able to describe the spreading kinetics in the case of partial wetting. Moreover, the model can predict the spreading dynamics of spherical cap-shaped droplets if the relationship between the contact angle and the capillary number is universal.Comment: 20 pages, 16 figure

    Humidity Influence on Mechanics and Failure of Paper Materials: Joint Numerical and Experimental Study on Fiber and Fiber Network Scale

    Full text link
    Paper materials are natural composite materials and well-known to be hydrophilic unless chemical and mechanical processing treatments are undertaken. The relative humidity impacts the fiber elasticity, the fiber-fiber bonds and the failure mechanism. In this work, we present a comprehensive experimental and computational study on the mechanical and failure behaviour of the fiber and the fiber network under humidity influence. The manually extracted cellulose fiber is exposed to different levels of humidity, and then mechanically characterized using Atomic Force Microscopy, which delivers the humidity dependent longitudinal Young's modulus. The obtained relationship allows calculation of fiber elastic modulus at any humidity level. Moreover, by using Confoncal Laser Scanning Microscopy, the coefficient of hygroscopic expansion of the fibers is determined. On the other hand, we present a finite element model to simulate the deformation and the failure of the fiber network. The model includes the fiber anisotropy and the hygroscopic expansion using the experimentally determined constants. In addition, it regards the fiber-fiber bonding and damage by using a humidity dependent cohesive zone interface model. Finite element simulations on exemplary fiber network samples are performed to demonstrate the influence of different aspects including relative humidity and fiber-fiber bonding parameters on the mechanical features such as force-elongation curves, wet strength, extensiability and the local fiber-fiber debonding. In meantime, fiber network failure in a locally wetted region is revealed by tracking of individually stained fibers using in-situ imaging techniques. Both the experimental data and the cohesive finite element simulations demonstrate the pull-out of fibers and imply the significant role of the fiber-fiber debonding in the failure process of the wet paper.Comment: 21 pages,10 figure

    Critical Micronutrients in Pregnancy, Lactation, and Infancy: Considerations on Vitamin D, Folic Acid, and Iron, and Priorities for Future Research

    Get PDF
    The Early Nutrition Academy and the European Commission-funded EURRECA Network of Excellence jointly sponsored a scientific workshop on critical micronutrients in pregnancy, lactation, and infancy. Current knowledge and unresolved questions on the supply of vitamin D, folic acid, and iron for pregnant women, lactating women, and infants, and their health effects were discussed. The question was addressed of whether, and under which circumstances, supplementation with these micronutrients in addition to usual dietary intakes is advisable. The workshop participants concluded that public health strategies for improving supplementation with these micronutrients in pregnancy, lactation, and infancy are required. Further research priorities should focus on adequately powered human intervention trials to obtain a stronger evidence base for the amounts of vitamin D, folic acid, and iron that have optimal effects on health. The conclusions of the workshop should help to inform the scientific community as well as public health policy strategies. Copyright (C) 2011 S. Karger AG, Base
    • …
    corecore