1,264 research outputs found

    Exploring hypotheses of the actions of TGF-beta 1 in epidermal wound healing using a 3D computational multiscale model of the human epidermis

    Get PDF
    In vivo and in vitro studies give a paradoxical picture of the actions of the key regulatory factor TGF-beta 1 in epidermal wound healing with it stimulating migration of keratinocytes but also inhibiting their proliferation. To try to reconcile these into an easily visualized 3D model of wound healing amenable for experimentation by cell biologists, a multiscale model of the formation of a 3D skin epithelium was established with TGF-beta 1 literature-derived rule sets and equations embedded within it. At the cellular level, an agent-based bottom-up model that focuses on individual interacting units ( keratinocytes) was used. This was based on literature-derived rules governing keratinocyte behavior and keratinocyte/ECM interactions. The selection of these rule sets is described in detail in this paper. The agent-based model was then linked with a subcellular model of TGF-beta 1 production and its action on keratinocytes simulated with a complex pathway simulator. This multiscale model can be run at a cellular level only or at a combined cellular/subcellular level. It was then initially challenged ( by wounding) to investigate the behavior of keratinocytes in wound healing at the cellular level. To investigate the possible actions of TGF-beta 1, several hypotheses were then explored by deliberately manipulating some of these rule sets at subcellular levels. This exercise readily eliminated some hypotheses and identified a sequence of spatial-temporal actions of TGF-beta 1 for normal successful wound healing in an easy-to-follow 3D model. We suggest this multiscale model offers a valuable, easy-to-visualize aid to our understanding of the actions of this key regulator in wound healing, and provides a model that can now be used to explore pathologies of wound healing

    Time Use and Food Pattern Influences on Obesity

    Get PDF
    The rise of obesity in the United States over the past 25 years has resulted in an increase in the number of research studies published related to the causes, consequences, and possible solutions to the problem. Most would agree that obesity is a multi-dimensional problem that requires a range of solutions related to individual diet and activity, food and built environment, and public policy. Examination of complex relationships between food choice, time use patterns, sociodemographic characteristics and obesity has been limited by data availability and disciplinary focus. Using the theory of the production of health capital, this paper links empirical data from the Consumer Expenditure, Current Population, and American Time Use Surveys to provide estimates of the impacts of food expenditure and time use patterns on obesity in single female headed households of 31–50 years of age

    Computing the social brain connectome across systems and states

    Get PDF
    Social skills probably emerge from the interaction between different neural processing levels. However, social neuroscience is fragmented into highly specialized, rarely cross-referenced topics. The present study attempts a systematic reconciliation by deriving a social brain definition from neural activity meta-analyses on social-cognitive capacities. The social brain was characterized by meta-analytic connectivity modeling evaluating coactivation in task-focused brain states and physiological fluctuations evaluating correlations in task-free brain states. Network clustering proposed a functional segregation into (1) lower sensory, (2) limbic, (3) intermediate, and (4) high associative neural circuits that together mediate various social phenomena. Functional profiling suggested that no brain region or network is exclusively devoted to social processes. Finally, nodes of the putative mirror-neuron system were coherently cross-connected during tasks and more tightly coupled to embodied simulation systems rather than abstract emulation systems. These first steps may help reintegrate the specialized research agendas in the social and affective sciences

    Turning I into me: Imagining your future self.

    Get PDF
    A widely endorsed belief is that perceivers imagine their present selves using a different representational format than imagining their future selves (i.e., near future=first-person; distant future=third-person). But is this really the case? Responding to the paucity of work on this topic, here we considered how temporal distance influences the extent to which individuals direct their attention outward or inward during a brief imaginary episode. Using a non-verbal measure of visual perspective taking (i.e., letter-drawing task) our results confirmed the hypothesized relation between temporal distance and conceptions of the self. Whereas simulations of an event in the near future were dominated by a first-person representation of the self, this switched to a third-person depiction when the event was located in the distant future. Critically, this switch in vantage point was restricted to self-related simulations. The theoretical and practical implications of these findings are considered

    Custom human endogenous retroviruses dedicated microarray identifies self-induced HERV-W family elements reactivated in testicular cancer upon methylation control

    Get PDF
    Endogenous retroviruses (ERVs) are an inherited part of the eukaryotic genomes, and represent ∼400 000 loci in the human genome. Human endogenous retroviruses (HERVs) can be divided into distinct families, composed of phylogenetically related but structurally heterogeneous elements. The majority of HERVs are silent in most physiological contexts, whereas a significant expression is observed in pathological contexts, such as cancers. Owing to their repetitive nature, few of the active HERV elements have been accurately identified. In addition, there are no criteria defining the active promoters among HERV long-terminal repeats (LTRs). Hence, it is difficult to understand the HERV (de)regulation mechanisms and their implication on the physiopathology of the host. We developed a microarray to specifically detect the LTR-containing transcripts from the HERV-H, HERV-E, HERV-W and HERV-K(HML-2) families. HERV transcriptome was analyzed in the placenta and seven normal/tumoral match-pair samples. We identified six HERV-W loci overexpressed in testicular cancer, including a usually placenta-restricted transcript of ERVWE1. For each locus, specific overexpression was confirmed by quantitative RT-PCR, and comparison of the activity of U3 versus U5 regions suggested a U3-promoted transcription coupled with 5′R initiation. The analysis of DNA from tumoral versus normal tissue revealed that hypomethylation of U3 promoters in tumors is a prerequisite for their activation

    SETDB1 Is Involved in Postembryonic DNA Methylation and Gene Silencing in Drosophila

    Get PDF
    DNA methylation is fundamental for the stability and activity of genomes. Drosophila melanogaster and vertebrates establish a global DNA methylation pattern of their genome during early embryogenesis. Large-scale analyses of DNA methylation patterns have uncovered revealed that DNA methylation patterns are dynamic rather than static and change in a gene-specific fashion during development and in diseased cells. However, the factors and mechanisms involved in dynamic, postembryonic DNA methylation remain unclear. Methylation of lysine 9 in histone H3 (H3-K9) by members of the Su(var)3–9 family of histone methyltransferases (HMTs) triggers embryonic DNA methylation in Arthropods and Chordates. Here, we demonstrate that Drosophila SETDB1 (dSETDB1) can mediate DNA methylation and silencing of genes and retrotransposons. We found that dSETDB1 tri-methylates H3-K9 and binds methylated CpA motifs. Tri-methylation of H3-K9 by dSETDB1 mediates recruitment of DNA methyltransferase 2 (Dnmt2) and Su(var)205, the Drosophila ortholog of mammalian “Heterochromatin Protein 1”, to target genes for dSETDB1. By enlisting Dnmt2 and Su(var)205, dSETDB1 triggers DNA methylation and silencing of genes and retrotransposons in Drosophila cells. DSETDB1 is involved in postembryonic DNA methylation and silencing of Rt1b{} retrotransposons and the tumor suppressor gene retinoblastoma family protein 1 (Rb) in imaginal discs. Collectively, our findings implicate dSETDB1 in postembryonic DNA methylation, provide a model for silencing of the tumor suppressor Rb, and uncover a role for cell type-specific DNA methylation in Drosophila development

    Development of a Three Dimensional Multiscale Computational Model of the Human Epidermis

    Get PDF
    Transforming Growth Factor (TGF-β1) is a member of the TGF-beta superfamily ligand-receptor network. and plays a crucial role in tissue regeneration. The extensive in vitro and in vivo experimental literature describing its actions nevertheless describe an apparent paradox in that during re-epithelialisation it acts as proliferation inhibitor for keratinocytes. The majority of biological models focus on certain aspects of TGF-β1 behaviour and no one model provides a comprehensive story of this regulatory factor's action. Accordingly our aim was to develop a computational model to act as a complementary approach to improve our understanding of TGF-β1. In our previous study, an agent-based model of keratinocyte colony formation in 2D culture was developed. In this study this model was extensively developed into a three dimensional multiscale model of the human epidermis which is comprised of three interacting and integrated layers: (1) an agent-based model which captures the biological rules governing the cells in the human epidermis at the cellular level and includes the rules for injury induced emergent behaviours, (2) a COmplex PAthway SImulator (COPASI) model which simulates the expression and signalling of TGF-β1 at the sub-cellular level and (3) a mechanical layer embodied by a numerical physical solver responsible for resolving the forces exerted between cells at the multi-cellular level. The integrated model was initially validated by using it to grow a piece of virtual epidermis in 3D and comparing the in virtuo simulations of keratinocyte behaviour and of TGF-β1 signalling with the extensive research literature describing this key regulatory protein. This research reinforces the idea that computational modelling can be an effective additional tool to aid our understanding of complex systems. In the accompanying paper the model is used to explore hypotheses of the functions of TGF-β1 at the cellular and subcellular level on different keratinocyte populations during epidermal wound healing

    Self-prioritization and perceptual matching: The effects of temporal construal.

    Get PDF
    Recent research has revealed that self-referential processing enhances perceptual judgments - the so-called self-prioritization effect. The extent and origin of this effect remains unknown, however. Noting the multifaceted nature of the self, here we hypothesized that temporal influences on self-construal (i.e., past/future-self continuity) may serve as an important determinant of stimulus prioritization. Specifically, as representations of the self increase in abstraction as a function of temporal distance (i.e., distance from now), self-prioritization may only emerge when stimuli are associated with the current self. The results of three experiments supported this prediction. Self-relevance only enhanced performance in a standard perceptual-matching task when stimuli (i.e., geometric shapes) were connected with the current self; representations of the self in the future (Expts. 1 & 2) and past (Expt. 3) failed to facilitate decision making. To identify the processes underlying task performance, data were interrogated using a hierarchical drift diffusion model (HDDM) approach. Results of these analyses revealed that self-prioritization was underpinned by a stimulus bias (i.e., rate of information uptake). Collectively, these findings elucidate when and how self-relevance influences decisional processing

    Margarita de Sossa, Sixteenth-Century Puebla de los Ángeles, New Spain (Mexico)

    Get PDF
    Margarita de Sossa’s freedom journey was defiant and entrepreneurial. In her early twenties, still enslaved in Portugal, she took possession of her body; after refusing to endure her owner’s sexual demands, he sold her, and she was transported to Mexico. There, she purchased her freedom with money earned as a healer and then conducted an enviable business as an innkeeper. Sossa’s biography provides striking insights into how she conceptualized freedom in terms that included – but was not limited to – legal manumission. Her transatlantic biography offers a rare insight into the life of a free black woman (and former slave) in late sixteenth-century Puebla, who sought to establish various degrees of freedom for herself. Whether she was refusing to acquiesce to an abusive owner, embracing entrepreneurship, marrying, purchasing her own slave property, or later using the courts to petition for divorce. Sossa continued to advocate on her own behalf. Her biography shows that obtaining legal manumission was not always equivalent to independence and autonomy, particularly if married to an abusive husband, or if financial successes inspired the envy of neighbors
    corecore