24 research outputs found
Nucleation front instability in two-dimensional (2D) nanosheet gadolinium-doped cerium oxide (CGO) formation
Herein we report for the first time the synthesis of ceramic-organic three-dimensional (3D) layered gadolinium-doped cerium oxide (Ce1-XGdXO2-delta,CGO) and its exfoliation into two-dimensional (2D) nano-sheets. We adopt a water-based synthetic route via a homogenous precipitation approach at low temperatures (10-80 degrees C). The reaction conditions are tuned to investigate the effects of thermal energy on the final morphology. A low temperature (40 degrees C) morphological transition from nanoparticles (1D) to two-dimensional (2D) nanosheets is observed and associated with a low thermal energy transition of ca. 2.6 kJ mol(-1). For the 3D-layered material, exfoliation experiments are conducted in water/ethanol solutions. Systems at volume fractions ranging from 0.15 to 0.35 are demonstrated to promote under ultrasonic treatment the delamination into 2D nanosheets
Sarcoglycan sub-complex in WAG/Rij rats, a model of absence epilepsy: an immunofluorescence study
It is known that even in Central Nervous System the Dystrophin Glycoprotein Complex (DGC) exists but differs in composition from the DGC core present in muscle for the presence of several isoforms of dystrophin and for the existence of a sarcoglycan sub-complex which is made up only for ε- and ζ-sarcoglycans; for these reasons it was called “DGC-like”. Although that, in our previous studies we have found that all sarcoglycans are present in human cerebral cortex and in different regions of rat’s brain, suggesting that the composition of the brain DGC is not different from the muscle DGC but differing just for the function. In fact, our previous data showing the colocalization between sarcoglycans and GABAA Rε receptors in rat’s cerebral and cerebellar cortex, thalamus and hippocampus suggested us that in brain sarcoglycans could be associated with synaptic neurotransmission. To better understand which kind of relationship between sarcoglycans and GABAA receptors exists, we aim to investigate α-,β-,γ-,δ-,ε- and ζ-sarcoglycans and the GABAA Rε in the brain of the WAG/Rij rats, a model of absence epilepsy, using immunofluorescence techniques; we have observed cerebral cortex, thalamus and hippocampus, the structures mainly involved in absence epilepsy, comparing this to normal rat’s brain. Results show that the GABAA Rε receptors staining pattern is different from the normal rat’s brain presenting an abnormal fluorescence distribution consisting in discontinuous clusters around the cellular body. Sarcoglycans, instead, have shown the typical “spot-like” staining pattern around the cellular body, sometimes colocalizing with GABAA Rε receptor; moreover, they seem to have an higher staining pattern than normal rat’s brain. In our opinion these results, showing an alteration of GABAA Rε receptor pattern distribution and a normal or increased sarcoglycans staining pattern, allow us to hypothesize that the sarcoglycans in absence epilepsy are likely to compensate for the alteration in GABAA Rε receptor distribution. That support the opinion about the involvement of sarcoglycans in cellular signalling and receptor assembly regulating indirectly synaptic neurotransmission both in normal and in pathological condition
The impact of trauma, substance abuse, and psychiatric illness on suicidal and self-harm behaviours in a cohort of migrant detainees: An observational, prospective study
According to the WHO, detainees attempt suicide ten times more than the general population
The inhibition of 45A ncRNA expression reduces tumor formation, affecting tumor nodules compactness and metastatic potential in neuroblastoma cells
open16noWe recently reported the in vitro over-expression of 45A, a RNA polymerase IIItranscribed non-coding (nc)RNA, that perturbs the intracellular content of FE65L1 affecting cell proliferation rate, short-term response to genotoxic stress, substrate adhesion capacity and, ultimately, increasing the tumorigenic potential of human neuroblastoma cells. In this work, to deeply explore the mechanism by which 45A ncRNA contributes to cancer development, we targeted in vitro and in vivo 45A levels by the stable overexpression of antisense 45A RNA. 45A downregulation leads to deep modifications of cytoskeleton organization, adhesion and migration of neuroblastoma cells. These effects are correlated with alterations in the expression of several genes including GTSE1 (G2 and S phaseexpressed- 1), a crucial regulator of tumor cell migration and metastatic potential. Interestingly, the downregulation of 45A ncRNA strongly affects the in vivo tumorigenic potential of SKNBE2 neuroblastoma cells, increasing tumor nodule compactness and reducing GTSE1 protein expression in a subcutaneous neuroblastoma mouse model. Moreover, intracardiac injection of neuroblastoma cells showed that downregulation of 45A ncRNA also influences tumor metastatic ability. In conclusion, our data highlight a key role of 45A ncRNA in cancer development and suggest that its modulation might represent a possible novel anticancer therapeutic approach.openPenna, Ilaria; Gigoni, Arianna; Costa, Delfina; Vella, Serena; Russo, Debora; Poggi, Alessandro; Villa, Federico; Brizzolara, Antonella; Canale, Claudio; Mescola, Andrea; Daga, Antonio; Russo, Claudio; Nizzari, Mario; Florio, Tullio; Menichini, Paola; Pagano, AldoPenna, Ilaria; Gigoni, Arianna; Costa, Delfina; Vella, SERENA LUISA; Russo, Debora; Poggi, Alessandro; Villa, Federico; Brizzolara, Antonella; Canale, Claudio; Mescola, Andrea; Daga, Antonio; Russo, Claudio; Nizzari, Mario; Florio, Tullio; Menichini, Paola; Pagano, Ald
Carriers of ADAMTS13 Rare Variants Are at High Risk of Life-Threatening COVID-19
Thrombosis of small and large vessels is reported as a key player in COVID-19 severity. However, host genetic determinants of this susceptibility are still unclear. Congenital Thrombotic Thrombocytopenic Purpura is a severe autosomal recessive disorder characterized by uncleaved ultra-large vWF and thrombotic microangiopathy, frequently triggered by infections. Carriers are reported to be asymptomatic. Exome analysis of about 3000 SARS-CoV-2 infected subjects of different severities, belonging to the GEN-COVID cohort, revealed the specific role of vWF cleaving enzyme ADAMTS13 (A disintegrin-like and metalloprotease with thrombospondin type 1 motif, 13). We report here that ultra-rare variants in a heterozygous state lead to a rare form of COVID-19 characterized by hyper-inflammation signs, which segregates in families as an autosomal dominant disorder conditioned by SARS-CoV-2 infection, sex, and age. This has clinical relevance due to the availability of drugs such as Caplacizumab, which inhibits vWF-platelet interaction, and Crizanlizumab, which, by inhibiting P-selectin binding to its ligands, prevents leukocyte recruitment and platelet aggregation at the site of vascular damage
Gain- and Loss-of-Function CFTR Alleles Are Associated with COVID-19 Clinical Outcomes
Carriers of single pathogenic variants of the CFTR (cystic fibrosis transmembrane conductance regulator) gene have a higher risk of severe COVID-19 and 14-day death. The machine learning post-Mendelian model pinpointed CFTR as a bidirectional modulator of COVID-19 outcomes. Here, we demonstrate that the rare complex allele [G576V;R668C] is associated with a milder disease via a gain-of-function mechanism. Conversely, CFTR ultra-rare alleles with reduced function are associated with disease severity either alone (dominant disorder) or with another hypomorphic allele in the second chromosome (recessive disorder) with a global residual CFTR activity between 50 to 91%. Furthermore, we characterized novel CFTR complex alleles, including [A238V;F508del], [R74W;D1270N;V201M], [I1027T;F508del], [I506V;D1168G], and simple alleles, including R347C, F1052V, Y625N, I328V, K68E, A309D, A252T, G542*, V562I, R1066H, I506V, I807M, which lead to a reduced CFTR function and thus, to more severe COVID-19. In conclusion, CFTR genetic analysis is an important tool in identifying patients at risk of severe COVID-19
A genome-wide association study for survival from a multi-centre European study identified variants associated with COVID-19 risk of death
: The clinical manifestations of SARS-CoV-2 infection vary widely among patients, from asymptomatic to life-threatening. Host genetics is one of the factors that contributes to this variability as previously reported by the COVID-19 Host Genetics Initiative (HGI), which identified sixteen loci associated with COVID-19 severity. Herein, we investigated the genetic determinants of COVID-19 mortality, by performing a case-only genome-wide survival analysis, 60 days after infection, of 3904 COVID-19 patients from the GEN-COVID and other European series (EGAS00001005304 study of the COVID-19 HGI). Using imputed genotype data, we carried out a survival analysis using the Cox model adjusted for age, age2, sex, series, time of infection, and the first ten principal components. We observed a genome-wide significant (P-value < 5.0 × 10-8) association of the rs117011822 variant, on chromosome 11, of rs7208524 on chromosome 17, approaching the genome-wide threshold (P-value = 5.19 × 10-8). A total of 113 variants were associated with survival at P-value < 1.0 × 10-5 and most of them regulated the expression of genes involved in immune response (e.g., CD300 and KLR genes), or in lung repair and function (e.g., FGF19 and CDH13). Overall, our results suggest that germline variants may modulate COVID-19 risk of death, possibly through the regulation of gene expression in immune response and lung function pathways
Pathogen-sugar interactions revealed by universal saturation transfer analysis
Many pathogens exploit host cell-surface glycans. However, precise analyses of glycan ligands binding with heavily modified pathogen proteins can be confounded by overlapping sugar signals and/or compounded with known experimental constraints. Universal saturation transfer analysis (uSTA) builds on existing nuclear magnetic resonance spectroscopy to provide an automated workflow for quantitating protein-ligand interactions. uSTA reveals that early-pandemic, B-origin-lineage severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike trimer binds sialoside sugars in an “end-on” manner. uSTA-guided modeling and a high-resolution cryo–electron microscopy structure implicate the spike N-terminal domain (NTD) and confirm end-on binding. This finding rationalizes the effect of NTD mutations that abolish sugar binding in SARS-CoV-2 variants of concern. Together with genetic variance analyses in early pandemic patient cohorts, this binding implicates a sialylated polylactosamine motif found on tetraantennary N-linked glycoproteins deep in the human lung as potentially relevant to virulence and/or zoonosis
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe