15 research outputs found
Human infections with Shiga toxin-producing Escherichia coli, Switzerland, 2010-2014
Objectives: The aim of this study was to characterize a collection of 95 Shigatoxin-producing E.coli (STEC) isolated from human patients in Switzerland during 2010-2014. Methods: We performed O and H serotyping and molecular subtyping. Results: The five most common serogroups were O157, O145, O26, O103, and O146. Of the 95 strains, 35 (36.8%) carried stx1 genes only, 43 strains (45.2%) carried stx2 and 17 (17.9%) harbored combinations of stx1 and stx2 genes. Stx1a (42 strains) and stx2a (32 strains) were the most frequently detected stx subtypes. Genes for intimin (eae), hemolysin (hly), iron-regulated adhesion (iha), and the subtilase cytotoxin subtypes subAB1, subAB2-1, subAB2-2, or subAB2-3 were detected in 70.5, 83.2, 74.7, and 20% of the strains, respectively. Multilocus sequence typing assigned the majority (58.9%) of the isolates to five different clonal complexes (CC), 11, 32, 29, 20, and 165, respectively. CC11 included all O157:[H7] and O55:[H7] isolates. CC32 comprised O145:[H28] isolates, and O145:[H25] belonged to sequence type (ST) 342. CC29 contained isolates of the O26:[H11], O111:[H8] and O118:[Hnt] serogroups, and CC20 encompassed isolates of O51:H49/[Hnt] and O103:[H2]. CC165 included isolates typed O80:[H2]-ST301, all harboring stx2d, eae-ξ, hly, and 66.7% additionally harboring iha. All O80:[H2]-ST301 strains harbored at least 7 genes carried by pS88, a plasmid associated with extraintestinal virulence. Compared to data from Switzerland from the years 2000-2009, an increase of the proportion of non-O157 STEC infections was observed as well as an increase of infections due to STEC O146. By contrast, the prevalence of the highly virulent German clone STEC O26:[H11]-ST29 decreased from 11.3% during 2000-2009 to 1.1% for the time span 2010-2014. The detection of O80:[H2]-ST301 harboring stx2d, eae-ξ, hly, iha, and pS88 related genes suggests an ongoing emergence in Switzerland of an unusual, highly pathogenic STEC serotype. Conclusions: Serotyping and molecular subtyping of clinical STEC demonstrate that although STEC O157 predominates among STEC isolated from diseased humans, non-O157 STEC infections are increasing in Switzerland, including those due to STEC O146:[H2/H21/H28]-ST442/ST738 harboring subAB variants, and the recently emerged STEC O80:[H2]-ST301 harboring eae-ξ and pS88 associated extraintestinal pathogenic virulence genes
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
Characteristics of Listeria monocytogenes isolated from tonsils of slaughtered fattening pigs in Switzerland
Of 504 tonsil samples from slaughtered fattening pigs, 5.6 % were positive for Listeria monocytogenes by culture after enrichment. The 28 L. monocytogenes isolates were analyzed to gain insights into genetic relationships and virulence-associated traits. Of the 28 isolates, 57 % belonged to serotype 1/2a (genetic lineage II), 25 % to serotype 4b (genetic lineage I) and 18 % to serotype 1/2b (genetic lineage I). These serotypes are commonly associated with human listeriosis cases. Multilocus sequence typing assigned the 28 isolates to 16 clonal complexes (CCs) and three singletons, including one new sequence type (ST768). Several of these CCs were also found in strains from human infections. Sequence analysis of the whole internalin A gene (inlA) showed that all but one isolate (CC6/serotype 4b) encoded full-length proteins. Clinical strains from human patients commonly harbor full-length inlA. On the other hand, genes for benzalkonium chloride tolerance were not found and all but one isolate lacked genes for the stress survival islet (SSI-1). Thus, tonsils of slaughtered fattening pigs can be colonized with L. monocytogenes of public health impact. To counteract this threat during slaughter, prevention of contamination of carcasses and the environment is of major importance, in particular adherence to good slaughter hygiene practice. With regard to pig tonsils, special attention must be given to the handling and contamination of head meat and pig tongues
Draft Genome Sequences of Five Shiga Toxin-Producing Escherichia coli Isolates Harboring the New and Recently Described Subtilase Cytotoxin Allelic Variant subAB2-3
We present here the draft genome sequences of five Shiga toxin-producing Escherichia coli (STEC) strains which tested positive in a primary subAB screening. Assembly and annotation of the draft genomes revealed that all strains harbored the recently described allelic variant subAB2-3. Based on the sequence data, primers were designed to identify and differentiate this variant.ISSN:2169-828
Acute toxicity of silver and carbon nanoaerosols to normal and cystic fibrosis human bronchial epithelial cells
Inhalation of engineered nanoparticles (NP) poses a still unknown risk. Individuals with chronic lung diseases are expected to be more vulnerable to adverse effects of NP than normal subjects, due to altered respiratory structures and functions. Realistic and dose-controlled aerosol exposures were performed using the deposition chamber NACIVT. Well-differentiated normal and cystic fibrosis (CF) human bronchial epithelia (HBE) with established air-liquid interface and the human bronchial epithelial cell line BEAS-2B were exposed to spark-generated silver and carbon nanoaerosols (20 nm diameter) at three different doses. Necrotic and apoptotic cell death, pro-inflammatory response, epithelial function and morphology were assessed within 24 h after aerosol exposure. NP exposure resulted in significantly higher necrosis in CF than normal HBE and BEAS-2B cells. Before and after NP treatment, CF HBE had higher caspase-3 activity and secreted more IL-6 and MCP-1 than normal HBE. Differentiated HBE had higher baseline secretion of IL-8 and less caspase-3 activity and MCP-1 secretion compared to BEAS-2B cells. These biomarkers increased moderately in response to NP exposure, except for MCP-1, which was reduced in HBE after AgNP treatment. No functional and structural alterations of the epithelia were observed in response to NP exposure. Significant differences between cell models suggest that more than one and fully differentiated HBE should be used in future toxicity studies of NP in vitro.
Our findings support epidemiologic evidence that subjects with chronic airway diseases are more vulnerable to adverse effects of particulate air pollution. Thus, this sub-population needs to be included in nano-toxicity studies
Acute toxicity of silver and carbon nanoaerosols to normal and cystic fibrosis human bronchial epithelial cells
Inhalation of engineered nanoparticles (NP) poses a still unknown risk. Individuals with chronic lung diseases are expected to be more vulnerable to adverse effects of NP than normal subjects, due to altered respiratory structures and functions. Realistic and dose-controlled aerosol exposures were performed using the deposition chamber NACIVT. Well-differentiated normal and cystic fibrosis (CF) human bronchial epithelia (HBE) with established air-liquid interface and the human bronchial epithelial cell line BEAS-2B were exposed to spark-generated silver and carbon nanoaerosols (20 nm diameter) at three different doses. Necrotic and apoptotic cell death, pro-inflammatory response, epithelial function and morphology were assessed within 24 h after aerosol exposure. NP exposure resulted in significantly higher necrosis in CF than normal HBE and BEAS-2B cells. Before and after NP treatment, CF HBE had higher caspase-3 activity and secreted more IL-6 and MCP-1 than normal HBE. Differentiated HBE had higher baseline secretion of IL-8 and less caspase-3 activity and MCP-1 secretion compared to BEAS-2B cells. These biomarkers increased moderately in response to NP exposure, except for MCP-1, which was reduced in HBE after AgNP treatment. No functional and structural alterations of the epithelia were observed in response to NP exposure. Significant differences between cell models suggest that more than one and fully differentiated HBE should be used in future toxicity studies of NP in vitro.
Our findings support epidemiologic evidence that subjects with chronic airway diseases are more vulnerable to adverse effects of particulate air pollution. Thus, this sub-population needs to be included in nano-toxicity studies
A compact and portable deposition chamber to study nanoparticles in air-exposed tissue
BACKGROUND
Epidemiological studies show that elevated levels of particulate matter in ambient air are highly correlated with respiratory and cardiovascular diseases. Atmospheric particles originate from a large number of sources and have a highly complex and variable composition. An assessment of their potential health risks and the identification of the most toxic particle sources would require a large number of investigations. Due to ethical and economic reasons, it is desirable to reduce the number of in vivo studies and to develop suitable in vitro systems for the investigation of cell-particle interactions.
METHODS
We present the design of a new particle deposition chamber in which aerosol particles are deposited onto cell cultures out of a continuous air flow. The chamber allows for a simultaneous exposure of 12 cell cultures.
RESULTS
Physiological conditions within the deposition chamber can be sustained constantly at 36-37°C and 90-95% relative humidity. Particle deposition within the chamber and especially on the cell cultures was determined in detail, showing that during a deposition time of 2 hr 8.4% (24% relative standard deviation) of particles with a mean diameter of 50 nm [mass median diameter of 100 nm (geometric standard deviation 1.7)] are deposited on the cell cultures, which is equal to 24-34% of all charged particles. The average well-to-well variability of particles deposited simultaneously in the 12 cell cultures during an experiment is 15.6% (24.7% relative standard deviation).
CONCLUSIONS
This particle deposition chamber is a new in vitro system to investigate realistic cell-particle interactions at physiological conditions, minimizing stress on the cell cultures other than from deposited particles. A detailed knowledge of particle deposition characteristics on the cell cultures allows evaluating reliable dose-response relationships. The compact and portable design of the deposition chamber allows for measurements at any particle sources of interest
Recommended from our members
Cooperation between bHLH transcription factors and histones for DNA access.
The basic helix-loop-helix (bHLH) family of transcription factors recognizes DNA motifs known as E-boxes (CANNTG) and includes 108 members1. Here we investigate how chromatinized E-boxes are engaged by two structurally diverse bHLH proteins: the proto-oncogene MYC-MAX and the circadian transcription factor CLOCK-BMAL1 (refs. 2,3). Both transcription factors bind to E-boxes preferentially near the nucleosomal entry-exit sites. Structural studies with engineered or native nucleosome sequences show that MYC-MAX or CLOCK-BMAL1 triggers the release of DNA from histones to gain access. Atop the H2A-H2B acidic patch4, the CLOCK-BMAL1 Per-Arnt-Sim (PAS) dimerization domains engage the histone octamer disc. Binding of tandem E-boxes5-7 at endogenous DNA sequences occurs through direct interactions between two CLOCK-BMAL1 protomers and histones and is important for circadian cycling. At internal E-boxes, the MYC-MAX leucine zipper can also interact with histones H2B and H3, and its binding is indirectly enhanced by OCT4 elsewhere on the nucleosome. The nucleosomal E-box position and the type of bHLH dimerization domain jointly determine the histone contact, the affinity and the degree of competition and cooperativity with other nucleosome-bound factors