58 research outputs found
Epigenetic remodelling in human hepatocellular carcinoma
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer, being the sixth most commonly diagnosed cancer and the fourth leading cause of cancer-related death. As other heterogeneous solid tumours, HCC results from a unique synergistic combination of genetic alterations mixed with epigenetic modifications. In HCC the patterns and frequencies of somatic variations change depending on the nearby chromatin. On the other hand, epigenetic alterations often induce genomic instability prone to mutations. Epigenetics refers to heritable states of gene expression without alteration to the DNA sequence itself and, unlike genetic changes, the epigenetic modifications are reversible and affect gene expression more extensively than genetic changes. Thus, studies of epigenetic regulation and the involved molecular machinery are greatly contributing to the understanding of the mechanisms that underline HCC onset and heterogeneity. Moreover, this knowledge may help to identify biomarkers for HCC diagnosis and prognosis, as well as future new targets for more efficacious therapeutic approaches. In this comprehensive review we will discuss the state-of-the-art knowledge about the epigenetic landscape in hepatocarcinogenesis, including evidence on the diagnostic and prognostic role of non-coding RNAs, modifications occurring at the chromatin level, and their role in the era of precision medicine. Apart from other better-known risk factors that predispose to the development of HCC, characterization of the epigenetic remodelling that occurs during hepatocarcinogenesis could open the way to the identification of personalized biomarkers. It may also enable a more accurate diagnosis and stratification of patients, and the discovery of new targets for more efficient therapeutic approaches
Fibroblast growth factors 19 and 21 in acute liver damage
Currently there are very few pharmacological options available to treat acute liver injury. Because
its natural exposure to noxious stimuli the liver has developed a strong endogenous hepatoprotective capacity.
Indeed, experimental evidence exposed a variety of endogenous hepatic and systemic responses naturally
activated to protect the hepatic parenchyma and to foster liver regeneration, therefore preserving individual’s
survival. The fibroblast growth factor (FGF) family encompasses a range of polypeptides with important
effects on cellular differentiation, growth survival and metabolic regulation in adult organisms. Among these
FGFs, FGF19 and FGF21 are endocrine hormones that profoundly influence systemic metabolism but
also exert important hepatoprotective activities. In this review, we revisit the biology of these factors and
highlight their potential application for the clinical management of acute liver injur
The Transcription Factor GLI1 Mediates TGFb1 Driven EMT in Hepatocellular Carcinoma via a SNAI1-Dependent Mechanism
The role of the epithelial-to-mesenchymal transition (EMT) during hepatocellular carcinoma (HCC) progression is well
established, however the regulatory mechanisms modulating this phenomenon remain unclear. Here, we demonstrate that
transcription factor glioma-associated oncogene 1 (GLI1) modulates EMT through direct up-regulation of SNAI1 and serves
as a downstream effector of the transforming growth factor-b1 (TGFb1) pathway, a well-known regulator of EMT in cancer
cells. Overexpression of GLI1 increased proliferation, viability, migration, invasion, and colony formation by HCC cells.
Conversely, GLI1 knockdown led to a decrease in all the above-mentioned cancer-associated phenotypes in HCC cells.
Further analysis of GLI1 regulated cellular functions showed that this transcription factor is able to induce EMT and
identified SNAI1 as a transcriptional target of GLI1 mediating this cellular effect in HCC cells. Moreover, we demonstrated
that an intact GLI1-SNAI1 axis is required by TGFb1 to induce EMT in these cells. Together, these findings define a novel
cellular mechanism regulated by GLI1, which controls the growth and EMT phenotype in HCC.National Institutes of Health Grants CA100882 and CA128633 (to LRR) and CA165076; the Mayo Clinic
Center for Cell Signaling in Gastroenterology (NIDDK P30DK084567) (to MEFZ); the Mayo Clinic Cancer Center (CA15083), the Mayo Clinic Center for Translational
Science Activities (NIH/NCRR CTSA Grant Number KL2 RR024151), and an American Gastroenterological Association Foundation for Digestive Health and Nutrition
Bridging Grant (to LRR)
Current and novel therapeutic opportunities for systemic therapy in biliary cancer
none24Biliary tract cancers (BTCs) are a group of rare and aggressive malignancies that arise in the biliary tree within and outside the liver. Beyond surgical resection, which is beneficial for only a small proportion of patients, current strategies for treating patients with BTCs include chemotherapy, as a single agent or combination regimens, in the adjuvant and palliative setting. Increased characterisation of the molecular landscape of these tumours has facilitated the identification of molecular vulnerabilities, such as IDH mutations and FGFR fusions, that can be exploited for the treatment of BTC patients. Beyond targeted therapies, active research avenues explore the development of novel therapeutics that target the crosstalk between cancer and stroma, the cellular pathways involved in the regulation of cell death, the chemoresistance phenotype and the dysregulation of RNA. In this review, we discuss the therapeutic opportunities currently available in the management of BTC patients, and explore the strategies that can support the implementation of precision oncology in BTCs, including novel molecular targets, liquid biopsies and patient-derived predictive tools.openMarin J.J.G.; Prete M.G.; Lamarca A.; Tavolari S.; Landa-Magdalena A.; Brandi G.; Segatto O.; Vogel A.; Macias R.I.R.; Rodrigues P.M.; Casta A.L.; Mertens J.; Rodrigues C.M.P.; Fernandez-Barrena M.G.; Da Silva Ruivo A.; Marzioni M.; Mentrasti G.; Acedo P.; Munoz-Garrido P.; Cardinale V.; Banales J.M.; Valle J.W.; Bridgewater J.; Braconi C.Marin, J. J. G.; Prete, M. G.; Lamarca, A.; Tavolari, S.; Landa-Magdalena, A.; Brandi, G.; Segatto, O.; Vogel, A.; Macias, R. I. R.; Rodrigues, P. M.; Casta, A. L.; Mertens, J.; Rodrigues, C. M. P.; Fernandez-Barrena, M. G.; Da Silva Ruivo, A.; Marzioni, M.; Mentrasti, G.; Acedo, P.; Munoz-Garrido, P.; Cardinale, V.; Banales, J. M.; Valle, J. W.; Bridgewater, J.; Braconi, C
FOSL1 promotes cholangiocarcinoma via transcriptional effectors that could be therapeutically targeted
Understanding the molecular mechanisms involved in cholangiocarcinoma (bile duct cancer) development and progression stands as a critical step for the development of novel therapies. Through an inter-species approach, this study provides evidence of the clinical and functional role of the transcription factor FOSL1 in cholangiocarcinoma. Moreover, we report that downstream effectors of FOSL1 are susceptible to pharmacological inhibition, thus providing new opportunities for therapeutic intervention
Early efficacy evaluation of mesenchymal stromal cells (MSC) combined to biomaterials to treat long bone non-unions
Background and study aim: Advanced therapy medicinal products (ATMP) frequently lack of clinical data on efficacy to substantiate a future clinical use. This study aims to evaluate the efficacy to heal long bone delayed unions and non-unions, as secondary objective of the EudraCT 2011-005441-13 clinical trial, through clinical and radiological bone consolidation at 3, 6 and 12 months of follow-up, with subgroup analysis of affected bone, gender, tobacco use, and time since the original fracture. Patients and methods: Twenty-eight patients were recruited and surgically treated with autologous bone marrow derived mesenchymal stromal cells expanded under Good Manufacturing Practices, combined to bioceramics in the surgical room before implantation. Mean age was 39 ± 13 years, 57% were males, and mean Body Mass Index 27 ± 7. Thirteen (46%) were active smokers. There were 11 femoral, 4 humeral, and 13 tibial non-unions. Initial fracture occurred at a mean ± SD of 27.9 ± 31.2 months before recruitment. Efficacy results were expressed by clinical consolidation (no or mild pain if values under 30 in VAS scale), and by radiological consolidation with a REBORNE score over 11/16 points (value of or above 0.6875). Means were statistically compared and mixed models for repeated measurements estimated the mean and confidence intervals (95%) of the REBORNE Bone Healing scale. Clinical and radiological consolidation were analyzed in the subgroups with Spearman correlation tests (adjusted by Bonferroni). Results: Clinical consolidation was earlier confirmed, while radiological consolidation at 3 months was 25.0% (7/28 cases), at 6 months 67.8% (19/28 cases), and at 12 months, 92.8% (26/28 cases including the drop-out extrapolation of two failures). Bone biopsies confirmed bone formation surrounding the bioceramic granules. All locations showed similar consolidation, although this was delayed in tibial non-unions. No significant gender difference was found in 12-month consolidation (95% confidence). Higher consolidation scale values were seen in non-smoking patients at 6 (p = 0.012, t-test) and 12 months (p = 0.011, t-test). Longer time elapsed after the initial fracture did not preclude the occurrence of consolidation. Conclusion: Bone consolidation was efficaciously obtained with the studied expanded hBM-MSCs combined to biomaterials, by clinical and radiological evaluation, and confirmed by bone biopsies, with lower consolidation scores in smokers
Pilot multi-omic analysis of human bile from benign and malignant biliary strictures: a machine-learning approach
Cholangiocarcinoma (CCA) and pancreatic adenocarcinoma (PDAC) may lead to the development of extrahepatic obstructive cholestasis. However, biliary stenoses can also be caused by benign conditions, and the identification of their etiology still remains a clinical challenge. We performed metabolomic and proteomic analyses of bile from patients with benign (n = 36) and malignant conditions, CCA (n = 36) or PDAC (n = 57), undergoing endoscopic retrograde cholangiopancreatography with the aim of characterizing bile composition in biliopancreatic disease and identifying biomarkers for the differential diagnosis of biliary strictures. Comprehensive analyses of lipids, bile acids and small molecules were carried out using mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (1H-NMR) in all patients. MS analysis of bile proteome was performed in five patients per group. We implemented artificial intelligence tools for the selection of biomarkers and algorithms with predictive capacity. Our machine-learning pipeline included the generation of synthetic data with properties of real data, the selection of potential biomarkers (metabolites or proteins) and their analysis with neural networks (NN). Selected biomarkers were then validated with real data. We identified panels of lipids (n = 10) and proteins (n = 5) that when analyzed with NN algorithms discriminated between patients with and without cancer with an unprecedented accuracy.This research was funded by: Instituto de Salud Carlos III (ISCIII) co-financed by Fondo Europeo de Desarrollo Regional (FEDER) Una manera de hacer Europa, grant numbers: PI16/01126 (M.A.A.), PI19/00819 (M.J.M. and J.J.G.M.), PI15/01132, PI18/01075 and Miguel Servet Program CON14/00129 (J.M.B.); Fundación Científica de la Asociación Española Contra el Cáncer (AECC Scientific Foundation), grant name: Rare Cancers 2017 (J.M.U., M.L.M., J.M.B., M.J.M., R.I.R.M., M.G.F.-B., C.B., M.A.A.); Gobierno de Navarra Salud, grant number 58/17 (J.M.U., M.A.A.); La Caixa Foundation, grant name: HEPACARE (C.B., M.A.A.); AMMF The Cholangiocarcinoma Charity, UK, grant number: 2018/117 (F.J.C. and M.A.A.); PSC Partners US, PSC Supports UK, grant number 06119JB (J.M.B.); Horizon 2020 (H2020) ESCALON project, grant number H2020-SC1-BHC-2018–2020 (J.M.B.); BIOEF (Basque Foundation for Innovation and Health Research: EiTB Maratoia, grant numbers BIO15/CA/016/BD (J.M.B.) and BIO15/CA/011 (M.A.A.). Department of Health of the Basque Country, grant number 2017111010 (J.M.B.). La Caixa Foundation, grant number: LCF/PR/HP17/52190004 (M.L.M.), Mineco-Feder, grant number SAF2017-87301-R (M.L.M.), Fundación BBVA grant name: Ayudas a Equipos de Investigación Científica Umbrella 2018 (M.L.M.). MCIU, grant number: Severo Ochoa Excellence Accreditation SEV-2016-0644 (M.L.M.). Part of the equipment used in this work was co-funded by the Generalitat Valenciana and European Regional Development Fund (FEDER) funds (PO FEDER of Comunitat Valenciana 2014–2020). Gobierno de Navarra fellowship to L.C. (Leticia Colyn); AECC post-doctoral fellowship to M.A.; Ramón y Cajal Program contracts RYC-2014-15242 and RYC2018-024475-1 to F.J.C. and M.G.F.-B., respectively. The generous support from: Fundación Eugenio Rodríguez Pascual, Fundación Echébano, Fundación Mario Losantos, Fundación M Torres and Mr. Eduardo Avila are acknowledged. The CNB-CSIC Proteomics Unit belongs to ProteoRed, PRB3-ISCIII, supported by grant PT17/0019/0001 (F.J.C.). Comunidad de Madrid Grant B2017/BMD-3817 (F.J.C.).Peer reviewe
Hepatic matrix metalloproteinase-10 exerts a hepatoprotective role after acute liver injury
After injuries that lead to a loss of liver tissue a regenerative and reparative response is performed in order to restore an adequate hepatic mass. The remodeling of the extracellular matrix, accompanies the liver regeneration and when the reparative reaction goes awry in the setting of chronic liver injury, could be involved in the carcinogenic process (1,2). Following the damage, a provisional matrix is deposed, intended to be successively replaced, which has the function of stabilizing the lesional area and constitutes a support for guiding regenerating cells. Matrix metalloproteinases are increasingly recognized as important modulators of the matrix remodeling process. Matrix metalloproteinase-10 (MMP-10) has been implicated in the reparative process in other organs and has effects on the plasminogen system, which plays a fundamental role in liver repair (3). The hepatic expression of MMP10 in animal models of acute liver injury was tested in order to investigate the role of MMP-10 in liver repair and regeneration. The liver regeneration after two thirds partial hepatectomy (PH) and bile duct ligation (BDL) models were examined. Hepatic MMP-10 expression, analyzed by immunohistochemistry, western blot and qPCR showed a rise early after injury. In the MMP10-deficient mice a diminished and delayed resolution of necrotic lesions, enhanced fibrogenesis and a fibrinogen/fibrin and fibronectin compromised turnover were observed. These findings showed that the MMP10 expression plays a role in the hepatic wound healing response probably through its profibrinolytic activity
Current and novel therapeutic opportunities for systemic therapy in biliary cancer
Biliary tract cancers (BTCs) are a group of rare and aggressive malignancies that arise in the biliary tree within and outside the liver. Beyond surgical resection, which is beneficial for only a small proportion of patients, current strategies for treating patients with BTCs include chemotherapy, as a single agent or combination regimens, in the adjuvant and palliative setting. Increased characterisation of the molecular landscape of these tumours has facilitated the identification of molecular vulnerabilities, such as IDH mutations and FGFR fusions, that can be exploited for the treatment of BTC patients. Beyond targeted therapies, active research avenues explore the development of novel therapeutics that target the crosstalk between cancer and stroma, the cellular pathways involved in the regulation of cell death, the chemoresistance phenotype and the dysregulation of RNA. In this review, we discuss the therapeutic opportunities currently available in the management of BTC patients, and explore the strategies that can support the implementation of precision oncology in BTCs, including novel molecular targets, liquid biopsies and patient-derived predictive tools
Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
- …