15 research outputs found

    Dissociation of multiply charged negative ions for hirudin (54–65), fibrinopeptide B, and insulin A (oxidized)

    Get PDF
    AbstractCollision-induced dissociation (CID) was performed on multiply deprotonated ions from three commercial peptides: hirudin (54–65), fibrinopeptide B, and oxidized insulin chain A. Ions were produced by electrospray ionization in a Fourier transform ion cyclotron resonance mass spectrometer. Each of these peptides contains multiple acidic residues, which makes them very difficult to ionize in the positive mode. However, the peptides deprotonate readily making negative ion studies a viable alternative. The CID spectra indicated that the likely deprotonation sites are acidic residues (aspartic, glutamic, and cysteic acids) and the C-terminus. The spectra are rife with c, y, and internal ions, although some a, b, x, and z ions form. Many of the fragment ions were formed from cleavage adjacent to acidic residues, both N- and C-terminal to the acidic site. In addition, neutral loss (e.g., NH3, CH3, H2O, and CO2) was prevalent from both the parent ions and from fragment ions. These neutral eliminations were often indicative of specific amino acid residues. The fragmentation patterns from several charge states of the parent ions, when combined, provide significant primary sequence information. These results suggest that negative mode CID of multiply deprotonated ions provides useful structural information and can be worthwhile for highly acidic peptides that do not form positive ions in abundance

    Genome Sequencing Shows that European Isolates of Francisella tularensis Subspecies tularensis Are Almost Identical to US Laboratory Strain Schu S4

    Get PDF
    BACKGROUND: Francisella tularensis causes tularaemia, a life-threatening zoonosis, and has potential as a biowarfare agent. F. tularensis subsp. tularensis, which causes the most severe form of tularaemia, is usually confined to North America. However, a handful of isolates from this subspecies was obtained in the 1980s from ticks and mites from Slovakia and Austria. Our aim was to uncover the origins of these enigmatic European isolates. METHODOLOGY/PRINCIPAL FINDINGS: We determined the complete genome sequence of FSC198, a European isolate of F. tularensis subsp. tularensis, by whole-genome shotgun sequencing and compared it to that of the North American laboratory strain Schu S4. Apparent differences between the two genomes were resolved by re-sequencing discrepant loci in both strains. We found that the genome of FSC198 is almost identical to that of Schu S4, with only eight SNPs and three VNTR differences between the two sequences. Sequencing of these loci in two other European isolates of F. tularensis subsp. tularensis confirmed that all three European isolates are also closely related to, but distinct from Schu S4. CONCLUSIONS/SIGNIFICANCE: The data presented here suggest that the Schu S4 laboratory strain is the most likely source of the European isolates of F. tularensis subsp. tularensis and indicate that anthropogenic activities, such as movement of strains or animal vectors, account for the presence of these isolates in Europe. Given the highly pathogenic nature of this subspecies, the possibility that it has become established wild in the heartland of Europe carries significant public health implications

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Life-Cycle and Genome of OtV5, a Large DNA Virus of the Pelagic Marine Unicellular Green Alga Ostreococcus tauri

    Get PDF
    Large DNA viruses are ubiquitous, infecting diverse organisms ranging from algae to man, and have probably evolved from an ancient common ancestor. In aquatic environments, such algal viruses control blooms and shape the evolution of biodiversity in phytoplankton, but little is known about their biological functions. We show that Ostreococcus tauri, the smallest known marine photosynthetic eukaryote, whose genome is completely characterized, is a host for large DNA viruses, and present an analysis of the life-cycle and 186,234 bp long linear genome of OtV5. OtV5 is a lytic phycodnavirus which unexpectedly does not degrade its host chromosomes before the host cell bursts. Analysis of its complete genome sequence confirmed that it lacks expected site-specific endonucleases, and revealed the presence of 16 genes whose predicted functions are novel to this group of viruses. OtV5 carries at least one predicted gene whose protein closely resembles its host counterpart and several other host-like sequences, suggesting that horizontal gene transfers between host and viral genomes may occur frequently on an evolutionary scale. Fifty seven percent of the 268 predicted proteins present no similarities with any known protein in Genbank, underlining the wealth of undiscovered biological diversity present in oceanic viruses, which are estimated to harbour 200Mt of carbon

    The role of soil phosphorus sorption characteristics in the functioning and stability of lowland heath ecosystems

    No full text
    Previous research indicates that transition between lowland heath and scrub ecosystems depends upon soil phosphorus (P) sorption capacity (PSC). Experimental work found a positive relationship between P availability and tree invasion but the relationship between PSC, P availability and scrub invasion is poorly understood making it difficult to clearly link landscape invasion patterns with small-scale experimental findings. Using a combination of descriptive and experimental studies we re-examined the relationship between PSC and tree invasion and investigated the hypothesis that PSC is a key determinant of P retention and therefore the P available to scrub colonists. In a statistical model fitted to soil data from three regions soil organic matter (SOM) content explained most of the variation in available P but PSC also accounted for a significant portion of the variance. Additional models suggest that soil P saturation and the proportion of available P in water desorbable form, both indicators of leaching losses, are strongly dependent on PSC. These findings are supported by experimental results; there was greater retention of added P, in plant available form, on high PSC soils and low PSC soils saturated at lower levels of addition. When synthesized with existing data, these results demonstrate that the relationship between PSC and P availability operates via a variety of mechanisms and at several spatio-temporal scales. PSC may for instance, influence post-disturbance SOM accumulation rates. Therefore PSC, by controlling P-availability and ecosystem development, may control the propensity of a site to either heath or scrub

    Discovery of Thienoimidazole-Based HCV NS5A Genotype 1a and 1b Inhibitors

    No full text
    The discovery of potent thienoimidazole-based HCV NS5A inhibitors is herein reported. A novel method to access the thienoimidazole [5,5]-bicyclic system is disclosed. This method gave access to a common key intermediate (<b>6</b>) that was engaged in Suzuki or Sonogashira reactions with coupling partners bearing different linkers. A detailed study of the structure–activity relationship (SAR) of the linkers revealed that aromatic linkers with linear topologies are required to achieve high potency for both 1a and 1b HCV genotypes. Compound <b>20</b>, with a <i>para</i>-phenyl linker, was identified as a potential lead displaying potencies of 17 and 8 pM against genotype 1a and 1b replicons, respectively

    Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016 : a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    Background Traumatic brain injury (TBI) and spinal cord injury (SCI) are increasingly recognised as global health priorities in view of the preventability of most injuries and the complex and expensive medical care they necessitate. We aimed to measure the incidence, prevalence, and years of life lived with disability (YLDs) for TBI and SCI from all causes of injury in every country, to describe how these measures have changed between 1990 and 2016, and to estimate the proportion of TBI and SCI cases caused by different types of injury. Methods We used results from the Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study 2016 to measure the global, regional, and national burden of TBI and SCI by age and sex. We measured the incidence and prevalence of all causes of injury requiring medical care in inpatient and outpatient records, literature studies, and survey data. By use of clinical record data, we estimated the proportion of each cause of injury that required medical care that would result in TBI or SCI being considered as the nature of injury. We used literature studies to establish standardised mortality ratios and applied differential equations to convert incidence to prevalence of long-term disability. Finally, we applied GBD disability weights to calculate YLDs. We used a Bayesian meta-regression tool for epidemiological modelling, used cause-specific mortality rates for non-fatal estimation, and adjusted our results for disability experienced with comorbid conditions. We also analysed results on the basis of the Socio-demographic Index, a compound measure of income per capita, education, and fertility. Findings In 2016, there were 27.08 million (95% uncertainty interval [UI] 24.30-30.30 million) new cases of TBI and 0.93 million (0.78-1.16 million) new cases of SCI, with age-standardised incidence rates of 369 (331-412) per 100 000 population for TBI and 13 (11-16) per 100 000 for SCI. In 2016, the number of prevalent cases of TBI was 55.50 million (53.40-57.62 million) and of SCI was 27.04 million (24 .98-30 .15 million). From 1990 to 2016, the age-standardised prevalence of TBI increased by 8.4% (95% UI 7.7 to 9.2), whereas that of SCI did not change significantly (-0.2% [-2.1 to 2.7]). Age-standardised incidence rates increased by 3.6% (1.8 to 5.5) for TBI, but did not change significantly for SCI (-3.6% [-7.4 to 4.0]). TBI caused 8.1 million (95% UI 6. 0-10. 4 million) YLDs and SCI caused 9.5 million (6.7-12.4 million) YLDs in 2016, corresponding to age-standardised rates of 111 (82-141) per 100 000 for TBI and 130 (90-170) per 100 000 for SCI. Falls and road injuries were the leading causes of new cases of TBI and SCI in most regions. Interpretation TBI and SCI constitute a considerable portion of the global injury burden and are caused primarily by falls and road injuries. The increase in incidence of TBI over time might continue in view of increases in population density, population ageing, and increasing use of motor vehicles, motorcycles, and bicycles. The number of individuals living with SCI is expected to increase in view of population growth, which is concerning because of the specialised care that people with SCI can require. Our study was limited by data sparsity in some regions, and it will be important to invest greater resources in collection of data for TBI and SCI to improve the accuracy of future assessments. Copyright (C) 2018 The Author(s). Published by Elsevier Ltd.Peer reviewe
    corecore