81 research outputs found

    Myths of the High Medical Cost of Old Age and Dying

    Get PDF
    The rising costs of medical care in the United States are often erroneously linked to the growing population of older adults. Despite public perception, health care costs associated with aging are limited. Part of the ILC-USA's project on Ageism In America with generous support from the Open Society Institute, this report identifies and dispels seven myths about caring for older people at the end of life

    Noncrossing partitions, toggles, and homomesies

    Get PDF
    We introduce n(n-1)/2 natural involutions ("toggles") on the set S of non-crossing partitions π of size n, along with certain composite operations obtained by composing these involutions. We show that for many operations T of this kind, a surprisingly large family of functions f on S (including the function that sends π to the number of blocks of π) exhibits the homomesy phenomenon: the average of f over the elements of a T-orbit is the same for all T-orbits. We can apply our method of proof more broadly to toggle operations back on the collection of independent sets of certain graphs. We utilize this generalization to prove a theorem about toggling on a family of graphs called "2-cliquish." More generally, the philosophy of this "toggle-action," proposed by Striker, is a popular topic of current and future research in dynamic algebraic combinatorics

    Pannexin 1 drives efficient epithelial repair after tissue injury

    Get PDF
    Epithelial tissues such as lung and skin are exposed to the environment and therefore particularly vulnerable to damage during injury or infection. Rapid repair is therefore essential to restore function and organ homeostasis. Dysregulated epithelial tissue repair occurs in several human disease states, yet how individual cell types communicate and interact to coordinate tissue regeneration is incompletely understood. Here, we show that pannexin 1 (Panx1), a cell membrane channel activated by caspases in dying cells, drives efficient epithelial regeneration after tissue injury by regulating injury-induced epithelial proliferation. Lung airway epithelial injury promotes the Panx1-dependent release of factors including ATP, from dying epithelial cells, which regulates macrophage phenotype after injury. This process, in turn, induces a reparative response in tissue macrophages that includes the induction of the soluble mitogen amphiregulin, which promotes injury-induced epithelial proliferation. Analysis of regenerating lung epithelium identified Panx1-dependent induction of Nras and Bcas2, both of which positively promoted epithelial proliferation and tissue regeneration in vivo. We also established that this role of Panx1 in boosting epithelial repair after injury is conserved between mouse lung and zebrafish tailfin. These data identify a Panx1-mediated communication circuit between epithelial cells and macrophages as a key step in promoting epithelial regeneration after injury

    Buffy coat specimens remain viable as a DNA source for highly multiplexed genome-wide genetic tests after long term storage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Blood specimen collection at an early study visit is often included in observational studies or clinical trials for analysis of secondary outcome biomarkers. A common protocol is to store buffy coat specimens for future DNA isolation and these may remain in frozen storage for many years. It is uncertain if the DNA remains suitable for modern genome wide association (GWA) genotyping.</p> <p>Methods</p> <p>We isolated DNA from 120 Action to Control Cardiovascular Risk in Diabetes (ACCORD) clinical trial buffy coats sampling a range of storage times up to 9 years and other factors that could influence DNA yield. We performed TaqMan SNP and GWA genotyping to test whether the DNA retained integrity for high quality genetic analysis.</p> <p>Results</p> <p>We tested two QIAGEN automated protocols for DNA isolation, preferring the Compromised Blood Protocol despite similar yields. We isolated DNA from all 120 specimens (yield range 1.1-312 ug per 8.5 ml ACD tube of whole blood) with only 3/120 samples yielding < 10 ug DNA. Age of participant at blood draw was negatively associated with yield (mean change -2.1 ug/year). DNA quality was very good based on gel electrophoresis QC, TaqMan genotyping of 6 SNPs (genotyping no-call rate 1.1% in 702 genotypes), and excellent quality GWA genotyping data (maximum per sample genotype missing rate 0.64%).</p> <p>Conclusions</p> <p>When collected as a long term clinical trial or biobank specimen for DNA, buffy coats can be stored for up to 9 years in a -80degC frozen state and still produce high yields of DNA suitable for GWA analysis and other genetic testing.</p> <p>Trial Registration</p> <p>The Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial is registered with ClinicalTrials.gov, number <a href="http://www.clinicaltrials.gov/ct2/show/NCT00000620">NCT00000620</a>.</p

    Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers.

    Get PDF
    Genetic studies of type 1 diabetes (T1D) have identified 50 susceptibility regions, finding major pathways contributing to risk, with some loci shared across immune disorders. To make genetic comparisons across autoimmune disorders as informative as possible, a dense genotyping array, the Immunochip, was developed, from which we identified four new T1D-associated regions (P < 5 × 10(-8)). A comparative analysis with 15 immune diseases showed that T1D is more similar genetically to other autoantibody-positive diseases, significantly most similar to juvenile idiopathic arthritis and significantly least similar to ulcerative colitis, and provided support for three additional new T1D risk loci. Using a Bayesian approach, we defined credible sets for the T1D-associated SNPs. The associated SNPs localized to enhancer sequences active in thymus, T and B cells, and CD34(+) stem cells. Enhancer-promoter interactions can now be analyzed in these cell types to identify which particular genes and regulatory sequences are causal.This research uses resources provided by the Type 1 Diabetes Genetics Consortium, a collaborative clinical study sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), the National Institute of Allergy and Infectious Diseases (NIAID), the National Human Genome Research Institute (NHGRI), the National Institute of Child Health and Human Development (NICHD) and JDRF and supported by grant U01 DK062418 from the US National Institutes of Health. Further support was provided by grants from the NIDDK (DK046635 and DK085678) to P.C. and by a joint JDRF and Wellcome Trust grant (WT061858/09115) to the Diabetes and Inflammation Laboratory at Cambridge University, which also received support from the NIHR Cambridge Biomedical Research Centre. ImmunoBase receives support from Eli Lilly and Company. C.W. and H.G. are funded by the Wellcome Trust (089989). The Cambridge Institute for Medical Research (CIMR) is in receipt of a Wellcome Trust Strategic Award (100140). We gratefully acknowledge the following groups and individuals who provided biological samples or data for this study. We obtained DNA samples from the British 1958 Birth Cohort collection, funded by the UK Medical Research Council and the Wellcome Trust. We acknowledge use of DNA samples from the NIHR Cambridge BioResource. We thank volunteers for their support and participation in the Cambridge BioResource and members of the Cambridge BioResource Scientific Advisory Board (SAB) and Management Committee for their support of our study. We acknowledge the NIHR Cambridge Biomedical Research Centre for funding. Access to Cambridge BioResource volunteers and to their data and samples are governed by the Cambridge BioResource SAB. Documents describing access arrangements and contact details are available at http://www.cambridgebioresource.org.uk/. We thank the Avon Longitudinal Study of Parents and Children laboratory in Bristol, UK, and the British 1958 Birth Cohort team, including S. Ring, R. Jones, M. Pembrey, W. McArdle, D. Strachan and P. Burton, for preparing and providing the control DNA samples. This study makes use of data generated by the Wellcome Trust Case Control Consortium, funded by Wellcome Trust award 076113; a full list of the investigators who contributed to the generation of the data is available from http://www.wtccc.org.uk/.This is the author accepted manuscript. The final version is available via NPG at http://www.nature.com/ng/journal/v47/n4/full/ng.3245.html

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Osteoblasts Generate Testosterone From DHEA and Activate Androgen Signaling in Prostate Cancer Cells

    Full text link
    Bone metastasis is a complication of prostate cancer in up to 90% of men afflicted with advanced disease. Therapies that reduce androgen exposure remain at the forefront of treatment. However, most prostate cancers transition to a state whereby reducing testicular androgen action becomes ineffective. A common mechanism of this transition is intratumoral production of testosterone (T) using the adrenal androgen precursor dehydroepiandrosterone (DHEA) through enzymatic conversion by 3β- and 17β- hydroxysteroid dehydrogenases (3βHSD and 17βHSD). Given the ability of prostate cancer to form blastic metastases in bone, we hypothesized that osteoblasts might be a source of androgen synthesis. RNA expression analyses of murine osteoblasts and human bone confirmed that at least one 3βHSD and 17βHSD enzyme isoform was expressed, suggesting that osteoblasts are capable of generating androgens from adrenal DHEA. Murine osteoblasts were treated with 100- nM and 1- μM DHEA or vehicle control. Conditioned media from these osteoblasts were assayed for intermediate and active androgens by liquid chromatography- tandem mass spectrometry. As DHEA was consumed, the androgen intermediates androstenediol and androstenedione were generated and subsequently converted to T. Conditioned media of DHEA- treated osteoblasts increased androgen receptor (AR) signaling, prostate- specific antigen (PSA) production, and cell numbers of the androgen- sensitive prostate cancer cell lines C4- 2B and LNCaP. DHEA did not induce AR signaling in osteoblasts despite AR expression in this cell type. We describe an unreported function of osteoblasts as a source of T that is especially relevant during androgen- responsive metastatic prostate cancer invasion into bone. © 2021 American Society for Bone and Mineral Research (ASBMR). This article has been contributed to by US Government employees and their work is in the public domain in the USA.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/169292/1/jbmr4313_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/169292/2/jbmr4313.pd

    A review of nonsurgical facial rejuvenation

    No full text
    As the demand for noninvasive facial rejuvenation continues to grow, it is imperative that plastic surgeons maintain a mastery of nonsurgical techniques for restoring a youthful facial appearance. In this article, noninvasive interventions for skin resurfacing, tissue tightening, rhytid reduction and volume restoration are discussed with an emphasis on technical outcomes and potential complications. Overall, this review should serve as a primer for the aesthetic plastic surgeon who aims to offer safe, effective facial rejuvenation to patients who desire maximal results with minimal downtime

    Osteoblasts Generate Testosterone From DHEA

    No full text
    Bone metastasis is a complication of prostate cancer in up to 90% of men afflicted with advanced disease. Therapies that reduce androgen exposure remain at the forefront of treatment. However, most prostate cancers transition to a state whereby reducing testicular androgen action becomes ineffective. A common mechanism of this transition is intratumoral production of testosterone (T) using the adrenal androgen precursor dehydroepiandrosterone (DHEA) through enzymatic conversion by 3β- and 17β- hydroxysteroid dehydrogenases (3βHSD and 17βHSD). Given the ability of prostate cancer to form blastic metastases in bone, we hypothesized that osteoblasts might be a source of androgen synthesis. RNA expression analyses of murine osteoblasts and human bone confirmed that at least one 3βHSD and 17βHSD enzyme isoform was expressed, suggesting that osteoblasts are capable of generating androgens from adrenal DHEA. Murine osteoblasts were treated with 100- nM and 1- μM DHEA or vehicle control. Conditioned media from these osteoblasts were assayed for intermediate and active androgens by liquid chromatography- tandem mass spectrometry. As DHEA was consumed, the androgen intermediates androstenediol and androstenedione were generated and subsequently converted to T. Conditioned media of DHEA- treated osteoblasts increased androgen receptor (AR) signaling, prostate- specific antigen (PSA) production, and cell numbers of the androgen- sensitive prostate cancer cell lines C4- 2B and LNCaP. DHEA did not induce AR signaling in osteoblasts despite AR expression in this cell type. We describe an unreported function of osteoblasts as a source of T that is especially relevant during androgen- responsive metastatic prostate cancer invasion into bone. © 2021 American Society for Bone and Mineral Research (ASBMR). This article has been contributed to by US Government employees and their work is in the public domain in the USA.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/169292/1/jbmr4313_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/169292/2/jbmr4313.pd
    corecore