76 research outputs found

    TGF-β–dependent CD103 expression by CD8+ T cells promotes selective destruction of the host intestinal epithelium during graft-versus-host disease

    Get PDF
    Destruction of the host intestinal epithelium by donor effector T cell populations is a hallmark of graft-versus-host disease (GVHD), but the underlying mechanisms remain obscure. We demonstrate that CD8+ T cells expressing CD103, an integrin conferring specificity for the epithelial ligand E-cadherin, play a critical role in this process. A TCR transgenic GVHD model was used to demonstrate that CD103 is selectively expressed by host-specific CD8+ T cell effector populations (CD8 effectors) that accumulate in the host intestinal epithelium during GVHD. Although host-specific CD8 effectors infiltrated a wide range of host compartments, only those infiltrating the intestinal epithelium expressed CD103. Host-specific CD8 effectors expressing a TGF-β dominant negative type II receptor were defective in CD103 expression on entry into the intestinal epithelium, which indicates local TGF-β activity as a critical regulating factor. Host-specific CD8 effectors deficient in CD103 expression successfully migrated into the host intestinal epithelium but were retained at this site much less efficiently than wild-type host-specific CD8 effectors. The relevance of these events to GVHD pathogenesis is supported by the finding that CD103-deficient CD8+ T cells were strikingly defective in transferring intestinal GVHD pathology and mortality. Collectively, these data document a pivotal role for TGF-β–dependent CD103 expression in dictating the gut tropism, and hence the destructive potential, of CD8+ T cells during GVHD pathogenesis

    CD103 Deficiency Prevents Graft-versus-Host Disease but Spares Graft-versus-Tumor Effects Mediated by Alloreactive CD8 T Cells

    Get PDF
    Graft-versus-host disease (GVHD) remains the main barrier to broader application of allogeneic hematopoietic stem cell transplantation (alloSCT) as a curative therapy for host malignancy. GVHD is mediated by allogeneic T cells directed against histocompatibility antigens expressed by host tissues. Based on previous studies, we postulated that the integrin CD103 is required for CD8-mediated GVHD, but not for graft-versus-tumor effects (GVT).We herein provide evidence in support of this hypothesis. To circumvent the potentially confounding influence of donor CD4 T cells, we developed an alloSCT model in which GVHD mortality is mediated by purified CD8 T cells. In this model, host-reactive CD8 T cells receive CD4 T cell help at the time of initial activation but not in the effector phase in which mature CD8 T effectors migrate into host tissues. We show that donor CD8 T cells from wild-type BALB/c mice primed to host alloantigens induce GVHD pathology and eliminate tumors of host origin in the absence of host CD4 T cells. Importantly, CD103 deficiency dramatically attenuated GVHD mortality, but had no detectable impact on the capacity to eliminate a tumor line of host origin. We provide evidence that CD103 is required for accumulation of donor CD8 T cells in the host intestinal epithelium but not in the tumor or host lymphoid compartments. Consistent with these data, CD103 was preferentially expressed by CD8 T cells infiltrating the host intestinal epithelium but not by those infiltrating the tumor, lamina propria, or lymphoid compartments. We further demonstrate that CD103 expression is not required for classic CD8 effector activities including cytokine production and cytotoxicity.These data indicate that CD103 deficiency inhibits GVHD pathology while sparing anti-tumor effects mediated by CD8 T cells, identifying CD103 blockade as an improved strategy for GVHD prophylaxis

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Critical Role for CD103 +

    No full text

    Correction: Critical Role for CD103 +

    No full text

    A pathogenic role for the integrin CD103 in experimental allergic airways disease.

    Get PDF
    The integrin CD103 is the αE chain of integrin αEβ7 that is important in the maintenance of intraepithelial lymphocytes and recruitment of T cells and dendritic cells (DC) to mucosal surfaces. The role of CD103 in intestinal immune homeostasis has been well described, however, its role in allergic airway inflammation is less well understood. In this study, we used an ovalbumin (OVA)-induced, CD103-knockout (KO) BALB/c mouse model of experimental allergic airways disease (EAAD) to investigate the role of CD103 in disease expression, CD4(+) T-cell activation and DC activation and function in airways and lymph nodes. We found reduced airways hyper-responsiveness and eosinophil recruitment to airways after aerosol challenge of CD103 KO compared to wild-type (WT) mice, although CD103 KO mice showed enhanced serum OVA-specific IgE levels. Following aerosol challenge, total numbers of effector and regulatory CD4(+) T-cell subsets were significantly increased in the airways of WT but not CD103 KO mice, as well as a lack of DC recruitment into the airways in the absence of CD103. While total airway DC numbers, and their in vivo allergen capture activity, were essentially normal in steady-state CD103 KO mice, migration of allergen-laden airway DC to draining lymph nodes was disrupted in the absence of CD103 at 24 h after aerosol challenge. These data support a role for CD103 in the pathogenesis of EAAD in BALB/c mice through local control of CD4(+) T cell and DC subset recruitment to, and migration from, the airway mucosa during induction of allergic inflammation
    corecore