682 research outputs found

    Characterising the phenotypic diversity of Papilio dardanus wing patterns using an extensive museum collection

    Get PDF
    The history of 20th Century evolutionary biology can be followed through the study of mimetic butterflies. From the initial findings of discontinuous polymorphism through the debates regarding the evolution of mimicry and the step-size of evolutionary change, to the studies on supergene evolution and molecular characterisation of butterfly genomes, mimetic butterflies have been at the heart of evolutionary thought for over 100 years. During this time, few species have received as much attention and in-depth study as Papilio dardanus. To assist all aspects of mimicry research, we present a complete data-derived overview of the extent of polymorphism within this species. Using historical samples permanently held by the NHM London, we document the extent of phenotypic variation and characterise the diversity present in each of the subspecies and how it varies across Africa. We also demonstrate an association between “imperfect” mimetic forms and the transitional race formed in the area where Eastern and Western African populations meet around Lake Victoria. We present a novel portal for access to this collection, www.mimeticbutterflies.org, allowing remote access to this unique repository. It is hoped that this online resource can act as a nucleus for the sharing and dissemination of other collections databases and imagery connected with mimetic butterflies

    WSB-1 regulates the metastatic potential of hormone receptor negative breast cancer

    Get PDF
    © 2018 Cancer Research UK. Background: Metastatic spread is responsible for the majority of cancer-associated deaths. The tumour microenvironment, including hypoxia, is a major driver of metastasis. The aim of this study was to investigate the role of the E3 ligase WSB-1 in breast cancer biology in the context of the hypoxic tumour microenvironment, particularly regarding metastatic spread. Methods: In this study, WSB-1 expression was evaluated in breast cancer cell lines and patient samples. In silico analyses were used to determine the impact of WSB-1 expression on distant metastasis-free survival (DMFS) in patients, and correlation between WSB1 expression and hypoxia gene expression signatures. The role of WSB-1 on metastasis promotion was evaluated in vitro and in vivo. Results: High WSB1 expression was associated with decreased DMFS in ER-breast cancer and PR-breast cancer patients. Surprisingly, WSB1 expression was not positively correlated with known hypoxic gene expression signatures in patient samples. Our study is the first to show that WSB-1 knockdown led to decreased metastatic potential in breast cancer hormone receptor-negative models in vitro and in vivo. WSB-1 knockdown was associated with decreased metalloproteinase (MMP) activity, vascular endothelial growth factor (VEGF) secretion, and angiogenic potential. Conclusions: Our data suggests that WSB-1 may be an important regulator of aggressive metastatic disease in hormone receptor-negative breast cancer. WSB-1 could therefore represent a novel regulator and therapeutic target for secondary breast cancer in these patients

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Naturally occurring hybrids of coral reef butterflyfishes have similar fitness compared to parental species.

    Get PDF
    Hybridisation can produce evolutionary novelty by increasing fitness and adaptive capacity. Heterosis, or hybrid vigour, has been documented in many plant and animal taxa, and is a notable consequence of hybridisation that has been exploited for decades in agriculture and aquaculture. On the contrary, loss of fitness in naturally occurring hybrid taxa has been observed in many cases. This can have negative consequences for the parental species involved (wasted reproductive effort), and has raised concerns for species conservation. This study evaluates the relative fitness of previously documented butterflyfish hybrids of the genus Chaetodon from the Indo-Pacific suture zone at Christmas Island. Histological examination confirmed the reproductive viability of Chaetodon hybrids. Examination of liver lipid content showed that hybrid body condition was not significantly different from parent species body condition. Lastly, size at age data revealed no difference in growth rates and asymptotic length between hybrids and parent species. Based on the traits measured in this study, naturally occurring hybrids of Chaetodon butterflyfishes have similar fitness to their parental species, and are unlikely to supplant parental species under current environmental conditions at the suture zone. However, given sufficient fitness and ongoing genetic exchange between the respective parental species, hybrids are likely to persist within the suture zone

    Drosophila Genome-Wide RNAi Screen Identifies Multiple Regulators of HIF–Dependent Transcription in Hypoxia

    Get PDF
    Hypoxia-inducible factors (HIFs) are a family of evolutionary conserved alpha-beta heterodimeric transcription factors that induce a wide range of genes in response to low oxygen tension. Molecular mechanisms that mediate oxygen-dependent HIF regulation operate at the level of the alpha subunit, controlling protein stability, subcellular localization, and transcriptional coactivator recruitment. We have conducted an unbiased genome-wide RNA interference (RNAi) screen in Drosophila cells aimed to the identification of genes required for HIF activity. After 3 rounds of selection, 30 genes emerged as critical HIF regulators in hypoxia, most of which had not been previously associated with HIF biology. The list of genes includes components of chromatin remodeling complexes, transcription elongation factors, and translational regulators. One remarkable hit was the argonaute 1 (ago1) gene, a central element of the microRNA (miRNA) translational silencing machinery. Further studies confirmed the physiological role of the miRNA machinery in HIF–dependent transcription. This study reveals the occurrence of novel mechanisms of HIF regulation, which might contribute to developing novel strategies for therapeutic intervention of HIF–related pathologies, including heart attack, cancer, and stroke

    Synthesis of a Dual Functional Anti-MDR Tumor Agent PH II-7 with Elucidations of Anti-Tumor Effects and Mechanisms

    Get PDF
    Multidrug resistance mediated by P-glycoprotein in cancer cells has been a major issue that cripples the efficacy of chemotherapy agents. Aimed for improved efficacy against resistant cancer cells, we designed and synthesized 25 oxindole derivatives based on indirubin by structure-activity relationship analysis. The most potent one was named PH II-7, which was effective against 18 cancer cell lines and 5 resistant cell lines in MTT assay. It also significantly inhibited the resistant xenograft tumor growth in mouse model. In cell cycle assay and apoptosis assay conducted with flow cytometry, PH II-7 induced S phase cell cycle arrest and apoptosis even in resistant cells. Consistently revealed by real-time PCR, it modulates the expression of genes related to the cell cycle and apoptosis in these cells, which may contributes to its efficacy against them. By side-chain modification and FITC-labeling of PH II-7, we were able to show with confocal microscopy that not only it was not pumped by P-glycoprotein, it also attenuated the efflux of Adriamycin by P-glycoprotein in MDR tumor cells. Real-time PCR and western blot analysis showed that PH II-7 down-regulated MDR1 gene via protein kinase C alpha (PKCA) pathway, with c-FOS and c-JUN as possible mediators. Taken together, PH II-7 is a dual-functional compound that features both the cytotoxicity against cancer cells and the inhibitory effect on P-gp mediated drug efflux

    Measurement of the cross section for inclusive isolated-photon production in pp collisions at √s=13TeV using the ATLAS detector

    Get PDF
    Inclusive isolated-photon production in pp collisions at a centre-of-mass energy of 13TeVis studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 3.2fb−1. The cross section is measured as a function of the photon transverse energy above 125GeVin different regions of photon pseudorapidity. Next-to-leading-order perturbative QCD and Monte Carlo event-generator predictions are compared to the cross-section measurements and provide an adequate description of the data
    • 

    corecore