9 research outputs found

    The EU Butterfly Indicator for Grassland species: 1990-2017. Technical report

    Get PDF
    The EU Grassland Butterfly Indicator is one of the indicators of the status of biodiversity in the European Union. It is an abundance indicator based on data recording the population trends of seventeen butterfly species in 16 (see below) EU countries. This report presents the seventh version of this indicator now covering 28 years. At the Convention on Biological Diversity meeting in Nagoya (Japan) the Strategic Plan for Biodiversity 2011– 2020 was adopted. It proposed five goals and 20 “Aichi” biodiversity targets. In line with this plan a new EU biodiversity strategy was adopted by the European Commission in May 2011. This provided a framework for the EU to meet its own biodiversity objectives and its global commitments as a party to the CBD. The Headline Target is to halt the loss of biodiversity and the degradation of ecosystem services in the EU by 2020, and restore them, in so far as feasible, while stepping up the EU contribution to averting global biodiversity loss. Under Target 3A the EU is committed to increase the contribution of agriculture to biodiversity recovery. Europe now has one year left to intensify action to achieve this. The EU biodiversity strategy includes the development of a coherent framework for monitoring, assessing and reporting on progress in implementing actions. Such a framework is needed to link existing biodiversity data and knowledge systems with the strategy, to help assess achievement of the goals and to streamline EU and global monitoring, reporting and review obligations. Some of the EU biodiversity indicators provide specific measurements and trends on genetic, species and ecosystem/landscape diversity, but many have a more indirect link to biodiversity. Very few have been established specifically to assess biodiversity. The status indicators on species only cover birds, bats and butterflies, since these are the only taxa/species groups for which harmonized European monitoring data are available (EEA, 2012). For the EU Grassland Butterfly Indicator the trends of seventeen widespread and characteristic grassland butterflies were assessed in 16 countries in the European Union. This technical report gives an overview of the method and results, and presents the indicator

    Butterfly indicators 1990-2018. Technical report

    Get PDF
    There is mounting evidence of widespread declines in the diversity and abundance of insects from across the globe (Sanchez-Bayo and Wyckhuys 2019, Seibold et al. 2019, van Klink et al. 2020, Wagner 2020). This gives a stark warning for the perilous state of biodiversity (Diaz et al. 2019), and demonstrates that addressing the gap in knowledge of the status of insects is vital (Cardoso et al. 2020, Samways et al. 2020). Insects are estimated to comprise more than half of all described species and are a dominant component of biodiversity in most ecosystems (Bar-On et al. 2018). Insects also provide a crucial role in the functioning of ecosystems. They are not only related to the supply of many ecosystem services such as pollination, biological control, soil fertility regulation and diverse cultural ecosystem services but also to disservices such as damage to crops and spread of diseases to livestock and humans (Gutierrez-Arellano and Mulligan 2018, Noriega et al. 2018). There is a pressing need to assess the status of insects to set and evaluate conservation targets. At the Convention on Biological Diversity (CBD) meeting in Nagoya (Japan), the Strategic Plan for Biodiversity 2011-2020 was adopted. It proposed five goals and 20 "Aichi" biodiversity targets. In line with this plan, a new EU biodiversity strategy was adopted by the European Commission in May 2011. This strategy provided a framework for the EU to meet its biodiversity targets and global commitments as a party to the CBD. The Headline Target in the existing EU Biodiversity Strategy 2020 is to halt the loss of biodiversity and the degradation of ecosystem services in the EU by 2020, and restore them, in so far as feasible, while stepping up the EU contribution to averting global biodiversity loss. Under Target 3A the EU is committed to increasing the contribution of agriculture to biodiversity recovery. Further, the EU Biodiversity Strategy 2030 includes the development of a coherent framework for monitoring, assessing and reporting on progress in implementing actions. Such a framework is needed to link existing biodiversity data and knowledge systems with the strategy, to help assess achievement of the goals and to streamline EU and global monitoring, reporting and review obligations. Some of the EU biodiversity indicators provide specific measurements and trends on genetic, species and ecosystem/landscape diversity, but many have a more indirect link to biodiversity. Very few have been explicitly established to assess biodiversity. The status indicators on species only cover birds, bats and butterflies, since these are the only taxa/species groups for which reasonably harmonized European monitoring data are available (EEA, 2012). This technical report builds upon previous technical reports for the EU Grassland Butterfly Indicator (e.g. van Swaay et al., 2019) to: 1. Describe a new approach for assessing butterfly trends and developing indicators of European butterflies; 2. Give an overview of the main results, and present a range of butterfly indicators; 3. Discuss the next steps to improve butterfly indicators for Europe. Butterflies are ideal biological indicators: they are well-documented, measurable, sensitive to environmental change, occur in a wide range of habitat types, represent many other insects, and are popular with the public because of their beauty. Field monitoring is essential to assess changes in their abundance. Indicators based on butterfly monitoring data are valuable to understand the state of the environment and help evaluate policy and implementation. Trained volunteers are a cost-effective way of gathering robust data on butterflies, more so when supported by informative materials and efficient online recording

    The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    No full text
    The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity

    The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    No full text

    The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    Get PDF
    The PREDICTS project—Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)—has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity
    corecore