386 research outputs found

    Mobile phone applications and self-management of diabetes: a systematic review with meta-analysis, meta-regression of 21 randomized trials, and GRADE

    Get PDF
    We conducted a systematic review with meta‐analysis of randomized controlled trials that evaluated the effect of diabetes apps. 1550 participants from 21 studies were included. For type 1 diabetes, a significant 0.49% reduction in HbA1c was seen (95%CI 0.04 to 0.94; I2=84%), with unexplained heterogeneity and a low GRADE of evidence. For type 2 diabetes, using diabetes apps was associated with a mean reduction of 0.57% (95%CI 0.32 to 0.82, I2=77%). The results had severe heterogeneity that was explained by the frequency of HCP feedback. In studies with no HCP feedback, low frequency, and high frequency HCP feedback, the mean reduction is 0.24% (95%CI ‐0.02 to 0.49; I2=0%), 0.33% (95%CI 0.07 to 0.59; I2=47%), and 1.12% (95%CI 0.91 to 1.32; I2=0%) respectively, with high GRADE of evidence. There is evidence that diabetes apps improve glycemic control in type 1 diabetes patients. A reduction of 0.57% in HbA1c was found in type 2 diabetes patients. However, HCP functionality is important to achieve clinical effectiveness. Futures studies need to explore the cost‐effectiveness of diabetes apps and optimal intensity of HCP feedback

    Intersection between metabolic dysfunction, high fat diet consumption, and brain aging

    Get PDF
    Deleterious neurochemical, structural, and behavioral alterations are a seemingly unavoidable aspect of brain aging. However, the basis for these alterations, as well as the basis for the tremendous variability in regards to the degree to which these aspects are altered in aging individuals, remains to be elucidated. An increasing number of individuals regularly consume a diet high in fat, with high‐fat diet consumption known to be sufficient to promote metabolic dysfunction, although the links between high‐fat diet consumption and aging are only now beginning to be elucidated. In this review we discuss the potential role for age‐related metabolic disturbances serving as an important basis for deleterious perturbations in the aging brain. These data not only have important implications for understanding the basis of brain aging, but also may be important to the development of therapeutic interventions which promote successful brain aging.Fil: Uranga, Romina Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; ArgentinaFil: Bruce Keller, Annadora J.. State University of Louisiana; Estados UnidosFil: Morrison, Christopher D.. State University of Louisiana; Estados UnidosFil: Fernandez Kim, Sun Ok. State University of Louisiana; Estados UnidosFil: Ebenezer, Philip J.. State University of Louisiana; Estados UnidosFil: Zhang, Le. State University of Louisiana; Estados UnidosFil: Dasuri, Kalavathi. State University of Louisiana; Estados UnidosFil: Keller, Jeffrey N.. State University of Louisiana; Estados Unido

    Cord blood calcium, phosphate, magnesium, and alkaline phosphatase gestational age-specific reference intervals for preterm infants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective was to determine the influence of gestational age, maternal, and neonatal variables on reference intervals for cord blood bone minerals (calcium, phosphate, magnesium) and related laboratory tests (alkaline phosphatase, and albumin-adjusted calcium), and to develop gestational age specific reference intervals based on infants without influential pathological conditions.</p> <p>Methods</p> <p>Cross-sectional study. 702 babies were identified as candidates for this study in a regional referral neonatal unit. After exclusions (for anomalies, asphyxia, maternal magnesium sulfate administration, and death), relationships were examined between cord blood serum laboratory analytes (calcium, phosphate, magnesium, alkaline phosphatase, and albumin-adjusted calcium) with gestation age and also with maternal and neonatal variables using multiple linear regression. Infants with influential pathological conditions were omitted from the development of gestational age specific reference intervals for the following categories: 23-27, 28-31, 32-34, 35-36 and > 36 weeks.</p> <p>Results</p> <p>Among the 506 preterm and 54 terms infants included in the sample. Phosphate, magnesium, and alkaline phosphatase in cord blood serum decreased with gestational age, calcium increased with gestational age. Those who were triplets, small for gestational age, and those whose mother had pregnancy-induced hypertension were influential for most of the analytes. The reference ranges for the preterm infants ≥ 36 weeks were: phosphate 1.5 to 2.6 mmol/L (4.5 to 8.0 mg/dL), calcium: 2.1 to 3.1 mmol/L (8.3 to 12.4 mg/dL); albumin-adjusted calcium: 2.3 to 3.2 mmol/L (9.1 to 12.9 mg/dL); magnesium 0.6 to 1.0 mmol/L (1.4 to 2.3 mg/dL), and alkaline phosphatase 60 to 301 units/L.</p> <p>Conclusions</p> <p>These data suggest that gestational age, as well as potentially pathogenic maternal and neonatal variables should be considered in the development of reference intervals for preterm infants.</p

    Compact NMR relaxometry of human blood and blood components

    Get PDF
    Nuclear magnetic resonance relaxometry is a uniquely practical and versatile implementation of NMR technology. Because it does not depend on chemical shift resolution, it can be performed using low- field compact instruments deployed in atypical settings. Early relaxometry studies of human blood were focused on developing a diagnostic test for cancer. Those efforts were misplaced, as the measurements were not specific to cancer. However, important lessons were learned about the factors that drive the water longitudinal (T1) and transverse (T2) relaxation times. One key factor is the overall distribution of proteins and lipoproteins. Plasma water T2 can detect shifts in the blood proteome resulting from in- flammation, insulin resistance and dyslipidemia. In whole blood, T2 is sensitive to hemoglobin content and oxygenation, although the latter can be suppressed by manipulating the static and applied magnet- ic fields. Current applications of compact NMR relaxometry include blood tests for candidiasis, hemostasis, malaria and insulin resistance

    Perilipin Overexpression in White Adipose Tissue Induces a Brown Fat-Like Phenotype

    Get PDF
    Background: Perilipin A (PeriA) exclusively locates on adipocyte lipid droplets and is essential for lipid storage and lipolysis. Previously, we reported that adipocyte specific overexpression of PeriA caused resistance to diet-induced obesity and resulted in improved insulin sensitivity. In order to better understand the biological basis for this observed phenotype, we performed additional studies in this transgenic mouse model. Methodology and Principal Findings: When compared to control animals, whole body energy expenditure was increased in the transgenic mice. Subsequently, we performed DNA microarray analysis and real-time PCR on white adipose tissue. Consistent with the metabolic chamber data, we observed increased expression of genes associated with fatty acid β-oxidation and heat production, and a decrease in the genes associated with lipid synthesis. Gene expression of Pgc1a, a regulator of fatty acid oxidation and Ucp1, a brown adipocyte specific protein, was increased in the white adipose tissue of the transgenic mice. This observation was subsequently verified by both Western blotting and histological examination. Expression of RIP140, a regulator of white adipocyte differentiation, and the lipid droplet protein FSP27 was decreased in the transgenic mice. Importantly, FSP27 has been shown to control gene expression of these crucial metabolic regulators. Overexpression of PeriA in 3T3-L1 adipocytes also reduced FSP27 expression and diminished lipid droplet size. Conclusions: These findings demonstrate that overexpression of PeriA in white adipocytes reduces lipid droplet size by decreasing FSP27 expression and thereby inducing a brown adipose tissue-like phenotype. Our data suggest that modulation of lipid droplet proteins in white adipocytes is a potential therapeutic strategy for the treatment of obesity and its related disorders

    Losartan modulates muscular capillary density and reverses thiazide diuretic-exacerbated insulin resistance in fructose-fed rats

    Get PDF
    The renin–angiotensin system (RAS) is involved in the pathogenesis of insulin sensitivity (IS). The role of RAS in insulin resistance and muscular circulation has yet to be elucidated. Therefore, this study sought to determine the mechanisms of angiotensin II receptor blockers (ARBs) and/or diuretics on IS and capillary density (CD) in fructose-fed rats (FFRs). Sprague-Dawley rats were fed either normal chow (control group) or fructose-rich chow for 8 weeks. For the last 4 weeks, FFRs were allocated to four groups: an FFR group and groups treated with the thiazide diuretic hydrochlorothiazide (HCTZ), with the ARB losartan, or both. IS was evaluated by the euglycemic hyperinsulinemic glucose clamp technique at week 8. In addition, CD in the extensor digitorum longus muscle was evaluated. Blood pressure was significantly higher in the FFRs than in the controls. HCTZ, losartan and their combination significantly lowered blood pressure. IS was significantly lower in the FFR group than in the controls and was even lower in the HCTZ group. Losartan alone or combined with HCTZ significantly increased IS. In all cases, IS was associated with muscular CD, but not with plasma adiponectin or lipids. These results indicate that losartan reverses HCTZ-exacerbated insulin resistance, which can be mediated through the modulation of muscular circulation in rats with impaired glucose metabolism

    Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene

    Get PDF
    Journal ArticleDecreased insulin sensitivity, also referred to as insulin resistance (IR), is a fundamental abnormality in patients with type 2 diabetes and a risk factor for cardiovascular disease. While IR predisposition is heritable, the genetic basis remains largely unknown. The GENEticS of Insulin Sensitivity consortium conducted a genome-wide association study (GWAS) for direct measures of insulin sensitivity, such as euglycemic clamp or insulin suppression test, in 2,764 European individuals, with replication in an additional 2,860 individuals. The presence of a nonsynonymous variant of N-acetyltransferase 2 (NAT2) [rs1208 (803A>G, K268R)] was strongly associated with decreased insulin sensitivity that was independent of BMI. The rs1208 "A" allele was nominally associated with IR-related traits, including increased fasting glucose, hemoglobin A1C, total and LDL cholesterol, triglycerides, and coronary artery disease. NAT2 acetylates arylamine and hydrazine drugs and carcinogens, but predicted acetylator NAT2 phenotypes were not associated with insulin sensitivity. In a murine adipocyte cell line, silencing of NAT2 ortholog Nat1 decreased insulin-mediated glucose uptake, increased basal and isoproterenol- stimulated lipolysis, and decreased adipocyte differentiation, while Nat1 overexpression produced opposite effects. Nat1-deficient mice had elevations in fasting blood glucose, insulin, and triglycerides and decreased insulin sensitivity, as measured by glucose and insulin tolerance tests, with intermediate effects in Nat1 heterozygote mice. Our results support a role for NAT2 in insulin sensitivity

    Differential protein phosphorylation in 3T3-L1 adipocytes in response to insulin versus platelet-derived growth factor

    Get PDF
    Insulin regulates glucose metabolism in adipocytes via a phosphatidylinositide 3-kinase (PI3K)-dependent pathway that appears to involve protein phosphorylation. However, the generation of phosphoinositides is not sufficient for insulin action, and it has been suggested that insulin regulation of glucose metabolism may involve both PI3K-dependent and -independent pathways, the latter being insulin specific. To test this hypothesis, we have designed a phosphoprotein screen to study insulin-specific phosphoproteins that may be either downstream or in parallel to PI3K. Nineteen insulin-regulated phosphospots were detected in the cytosol and high speed pellet fractions, only six of which were significantly regulated by platelet-derived growth factor. Importantly, almost all (92%) of the insulin-specific phosphoproteins identified using this approach were sensitive to the PI3K inhibitor wortmannin. Thus, we obtained no evidence for an insulin-specific, PI3K-independent signaling pathway. A large proportion (62%) of the insulin-specific phosphoproteins were enriched in the same high speed pellet fraction to which PI3K was recruited in response to insulin. Thus, our data suggest that insulin specifically stimulates the phosphorylation of a novel subset of downstream targets and this may in part be because of the unique localization of PI3K in response to insulin in adipocytes

    Cell-Specific “Competition for Calories� Drives Asymmetric Nutrient-Energy Partitioning, Obesity, and Metabolic Diseases in Human and Non-human Animals

    Get PDF
    The mammalian body is a complex physiologic “ecosystem� in which cells compete for calories (i.e., nutrient-energy). Axiomatically, cell-types with competitive advantages acquire a greater number of consumed calories, and when possible, increase in size and/or number. Thus, it is logical and parsimonious to posit that obesity is the competitive advantages of fat-cells (adipocytes) driving a disproportionate acquisition and storage of nutrient-energy. Accordingly, we introduce two conceptual frameworks. Asymmetric Nutrient-Energy Partitioning describes the context-dependent, cell-specific competition for calories that determines the partitioning of nutrient-energy to oxidation, anabolism, and/or storage; and Effective Caloric Intake which describes the number of calories available to constrain energy-intake via the inhibition of the sensorimotor appetitive cells in the liver and brain that govern ingestive behaviors. Inherent in these frameworks is the independence and dissociation of the energetic demands of metabolism and the neuro-muscular pathways that initiate ingestive behaviors and energy intake. As we demonstrate, if the sensorimotor cells suffer relative caloric deprivation via asymmetric competition from other cell-types (e.g., skeletal muscle- or fat-cells), energy-intake is increased to compensate for both real and merely apparent deficits in energy-homeostasis (i.e., true and false signals, respectively). Thus, we posit that the chronic positive energy balance (i.e., over-nutrition) that leads to obesity and metabolic diseases is engendered by apparent deficits (i.e., false signals) driven by the asymmetric inter-cellular competition for calories and concomitant differential partitioning of nutrient-energy to storage. These frameworks, in concert with our previous theoretic work, the Maternal Resources Hypothesis, provide a parsimonious and rigorous explanation for the rapid rise in the global prevalence of increased body and fat mass, and associated metabolic dysfunctions in humans and other mammals inclusive of companion, domesticated, laboratory, and feral animals
    corecore