161 research outputs found

    Correlations in an expanding gas of hard-core bosons

    Full text link
    We consider a longitudinal expansion of a one-dimensional gas of hard-core bosons suddenly released from a trap. We show that the broken translational invariance in the initial state of the system is encoded in correlations between the bosonic occupation numbers in the momentum space. The correlations are protected by the integrability and exhibit no relaxation during the expansion

    Quantum decay of dark solitons in one dimensional Bose systems

    Full text link
    Unless protected by the exact integrability, solitons are subject to dissipative forces, originating from a thermally fluctuating background. At low enough temperatures TT background fluctuations should be considered as being quantized which enables us to calculate finite lifetime of the solitons Ο„βˆΌTβˆ’4\tau\sim T^{-4}. We also find that the coherent nature of the quantum fluctuations leads to long-range interactions between the solitons mediated by the superradiation. Our results are of relevance to current experiments with ultracold atoms, while the approach may be extended to solitons in other media.Comment: 5 pages, 1 figure. Accepted for publication in PRL

    Localization of eigenstates in a modified Tomonaga-Luttinger model

    Full text link
    We study the localization in the Hilbert space of a modified Tomonaga-Luttinger model. For the standard version of this model, the states are found to be extended in the basis of Slater determinants, representing the eigenstates of the non-interacting system. The linear dispersion which leads to the fact that these eigenstates are extended in the modified model is replaced by one with random level spacings modeling the complicated one-particle spectra of realistic models. The localization properties of the eigenstates are studied. The interactions are simplified and an effective one-dimensional Lloyd model is obtained. The effects of many-body energy correlations are studied numerically. The eigenstates of the system are found to be localized in Fock space for any strength of the interactions, but the localization is not exponential.Comment: 19 pages, 7 figure

    Replica Treatment of the Calogero-Sutherland Model

    Full text link
    Employing Forrester-Ha method of Jack polynomials, we derive an integral identity connecting certain N-fold coordinate average of the Calogero-Sutherland model with the n-fold replica integral. Subsequent analytical continuation to non-integer n leads to asymptotic expressions for the (static and dynamic) density-density correlation function of the model as well as the Green's function for an arbitrary coupling constant Ξ»\lambda.Comment: 15 pages, 3 figures, revised version, section 5 corrected, submitted to Nucl.Phys.

    Mobile impurities in integrable models

    Get PDF
    We use a mobile impurity or depleton model to study elementary excitations in one-dimensional integrable systems. For Lieb-Liniger and bosonic Yang-Gaudin models we express two phenomenological parameters characterising renormalised inter- actions of mobile impurities with superfluid background: the number of depleted particles, NN and the superfluid phase drop Ο€J\pi J in terms of the corresponding Bethe Ansatz solution and demonstrate, in the leading order, the absence of two-phonon scattering resulting in vanishing rates of inelastic processes such as viscosity experienced by the mobile impuritiesComment: 25 pages, minor corrections made to the manuscrip

    Kinetics of mobile impurities and correlation functions in one-dimensional superfluids at finite temperature

    Full text link
    We scrutinize the hydrodynamic approach for calculating dynamical correlations in one-dimensional superfluids near integrability and calculate the characteristic time scale {\tau} beyond which this approach is valid. For time scales shorter than {\tau} hydrodynamics fails and we develop an approach based on kinetics of fermionic quasiparticles described as mobile impurities. New universal results for the dynamical structure factor relevant to experiments in ultracold atomic gases are obtained.Comment: 5 pages, 2 figures. Supplemental material included. Version 3: Minor typos correcte

    Comment on "Kinetic theory for a mobile impurity in a degenerate Tonks-Girardeau gas"

    Full text link
    In a recent paper, arxiv:1402.6362, Gamayun, Lychkovskiy, and Cheianov studied the dynamics of a mobile impurity embedded into a one-dimensional Tonks-Girardeau gas of strongly interacting bosons. Employing the Boltzmann equation approach, they arrived at the following main conclusions: (i) a light impurity, being accelerated by a constant force does not exhibit Bloch oscillations; (ii) a heavy impurity does undergo Bloch oscillations, accompanied by a drift with the velocity proportional to the square root of force. In this comment we argue that the result (i) is an artifact of the classical Boltzmann approximation, which misses the formation of the (quasi) bound-state between the impurity and a hole. Result (ii), while not valid at asymptotically small force, indeed reflects an interesting intermediate-force behavior. Here we clarify its limits of applicability and extend beyond the Tonks-Girardeau limit.Comment: 2 pages, 1 figur

    Sudden Expansion of a One-Dimensional Bose Gas from Power-Law Traps

    Get PDF
    We analyze free expansion of a trapped one-dimensional Bose gas after a sudden release from the confining trap potential. By using the stationary phase and local density approximations, we show that the long-time asymptotic density profile and the momentum distribution of the gas are determined by the initial distribution of Bethe rapidities (quasimomenta) and hence can be obtained from the solutions to the Lieb-Liniger equations in the thermodynamic limit. For expansion from a harmonic trap, and in the limits of very weak and very strong interactions, we recover the self-similar scaling solutions known from the hydrodynamic approach. For all other power-law traps and arbitrary interaction strengths, the expansion is not self-similar and shows strong dependence of the density profile evolution on the trap anharmonicity. We also characterize dynamical fermionization of the expanding cloud in terms of correlation functions describing phase and density fluctuations.Comment: Final published version with modified title and a couple of other minor changes. 5 pages, 2 figures, and Supplemental Materia

    Fluctuational susceptibility of ultracold bosons in the vicinity of condensation

    Get PDF
    We study the behaviour of ultracold bosonic gas in the critical region above the Bose-Einstein condensation in the presence of an artificial magnetic field, BartB_\mathrm{art}. We show that the condensate fluctuations above the critical temperature TcT_c cause the fluctuational susceptibility, Ο‡fl\chi _\mathrm{fl}, of a uniform gas to have a stronger power-law divergence than in an analogous superconducting system. Measuring such a divergence opens new ways of exploring critical properties of the ultracold gas and an opportunity of an accurate determination of TcT_c. We describe a method of measuring Ο‡fl\chi _\mathrm{fl} which requires a constant gradient in BartB_\mathrm{art} and suggest a way of creating such a field in experiment.Comment: 5 pages, 3 figures, 5 pages of Supplement; the text is rewritten and rearranged, and the figures are modifie
    • …
    corecore