554 research outputs found
Promover os direitos das crianças - apostar na construção de melhores políticas públicas para a criança
Comunicação apresentada no 3º Encontro de Conhecimento e Cooperação, INA, Lisboa, 17 de setembro de 201
SCUBA divers as oceanographic samplers: The potential of dive computers to augment aquatic temperature monitoring
Monitoring temperature of aquatic waters is of great importance, with modelled, satellite and in-situ data providing invaluable insights into long-term environmental change. However, there is often a lack of depth-resolved temperature measurements. Recreational dive computers routinely record temperature and depth, so could provide an alternate and highly novel source of oceanographic information to fill this data gap. In this study, a citizen science approach was used to obtain over 7,000 scuba diver temperature profiles. The accuracy, offset and lag of temperature records was assessed by comparing dive computers with scientific conductivity-temperature-depth instruments and existing surface temperature data. Our results show that, with processing, dive computers can provide a useful and novel tool with which to augment existing monitoring systems all over the globe, but especially in under-sampled or highly changeable coastal environments
Analysis of labour market needs for engineers with enhanced knowledge in renewable energy in some European and Latin-American Countries
One of the main challenges related to the renewable energy labour market is that of human capital and as a consequence the educational profile of future employees is of paramount importance. Unfortunately, the skill level gained at University does not always fit with the practical needs of industry thus reducing the benefit-cost ratio of new employees and slowing down the transition to a green economy. Within this context, ‘The Crux’ project co-funded by EU under the framework of the Erasmus + programme aims at improving the renewable energy engineering curriculum at different university levels in several Universities of Latin America and Europe. In order to better appreciate the potential impact of the project, a survey on the labour market need for specialists with enhanced knowledge and skills in renewable and sustainable energy technologies has been conducted in the related EU and Latin America countries. More precisely, 60 organizations have been interviewed and almost 70% of them are interested in employing engineers with enhanced knowledge on renewable energy in the next three years. The analysis has shown significant discrepancies between EU and Latin American organizations. In fact, while future employees in EU countries will be mainly related to solar energy and management, the former together with wind and biomass will represent the main renewable energy working sector in Latin American countries. Moreover, MSc level will be the most demanded in EU while bachelor education seems to satisfy the future industry requirements in Latin America. Despite each country having its own needs, the research carried out under this EU project confirms the potential of renewable energy education on the global labour market in the near future
A monolithic continuous-flow microanalyzer with amperometric detection based on the green tape technology
The development of micro total analysis systems (muTAS) has become a growing research field. Devices that include not only the fluidics and the detection system but also the associated electronics are reported scarcely in the literature because of the complexity and the cost involved for their monolithic integration. Frequently, dedicated devices aimed at solving specific analytical problems are needed. In these cases, low-volume production processes are a better alternative to mass production technologies such as silicon and glass. In this work, the design, fabrication, and evaluation of a continuous-flow amperometric microanalyzer based on the green tape technology is presented. The device includes the microfluidics, a complete amperometric detection system, and the associated electronics. The operational lifetime of the working electrode constitutes a major weak point in electrochemical detection systems, especially when it is integrated in monolithic analytical devices. To increase the overall system reliability and its versatility, it was integrated following an exchangeable configuration. Using this approach, working electrodes can be readily exchanged, according to the analyte to be determined or when their surfaces become passivated or poisoned. Furthermore, the electronics of the system allow applying different voltamperometric techniques and provide four operational working ranges (125, 12.5, 1.25, and 0.375 muA) to do precise determinations at different levels of current intensity.The authors would like to thank the Spanish MEC for its financial support through:
Consolider-Ingenio 2010 (CSD2006-00012), TEC2006-13907-C04-04/MIC and CIT-
310200-2007-29
Insect pathogens as biological control agents: back to the future
The development and use of entomopathogens as classical, conservation and augmentative biological control agents have included a number of successes and some setbacks in the past 15 years. In this forum paper we present current information on development, use and future directions of insect-specific viruses, bacteria, fungi and nematodes as components of integrated pest management strategies for control of arthropod pests of crops, forests, urban habitats, and insects of medical and veterinary importance.
Insect pathogenic viruses are a fruitful source of MCAs, particularly for the control of lepidopteran pests. Most research is focused on the baculoviruses, important pathogens of some globally important pests for which control has become difficult due to either pesticide resistance or pressure to reduce pesticide residues. Baculoviruses are accepted as safe, readily mass produced, highly pathogenic and easily formulated and applied control agents. New baculovirus products are appearing in many countries and gaining an increased market share. However, the absence of a practical in vitro mass production system, generally higher production costs, limited post application persistence, slow rate of kill and high host specificity currently contribute to restricted use in pest control. Overcoming these limitations are key research areas for which progress could open up use of insect viruses to much larger markets.
A small number of entomopathogenic bacteria have been commercially developed for control of insect pests. These include several Bacillus thuringiensis sub-species, Lysinibacillus (Bacillus) sphaericus, Paenibacillus spp. and Serratia entomophila. B. thuringiensis sub-species kurstaki is the most widely used for control of pest insects of crops and forests, and B. thuringiensis sub-species israelensis and L. sphaericus are the primary pathogens used for medically important pests including dipteran vectors,. These pathogens combine the advantages of chemical pesticides and microbial control agents (MCAs): they are fast acting, easy to produce at a relatively low cost, easy to formulate, have a long shelf life and allow delivery using conventional application equipment and systemics (i.e. in transgenic plants). Unlike broad spectrum chemical pesticides, B. thuringiensis toxins are selective and negative environmental impact is very limited. Of the several commercially produced MCAs, B. thuringiensis (Bt) has more than 50% of market share. Extensive research, particularly on the molecular mode of action of Bt toxins, has been conducted over the past two decades. The Bt genes used in insect-resistant transgenic crops belong to the Cry and vegetative insecticidal protein families of toxins. Bt has been highly efficacious in pest management of corn and cotton, drastically reducing the amount of broad spectrum chemical insecticides used while being safe for consumers and non-target organisms. Despite successes, the adoption of Bt crops has not been without controversy. Although there is a lack of scientific evidence regarding their detrimental effects, this controversy has created the widespread perception in some quarters that Bt crops are dangerous for the environment. In addition to discovery of more efficacious isolates and toxins, an increase in the use of Bt products and transgenes will rely on innovations in formulation, better delivery systems and ultimately, wider public acceptance of transgenic plants expressing insect-specific Bt toxins.
Fungi are ubiquitous natural entomopathogens that often cause epizootics in host insects and possess many desirable traits that favor their development as MCAs. Presently, commercialized microbial pesticides based on entomopathogenic fungi largely occupy niche markets. A variety of molecular tools and technologies have recently allowed reclassification of numerous species based on phylogeny, as well as matching anamorphs (asexual forms) and teleomorphs (sexual forms) of several entomopathogenic taxa in the Phylum Ascomycota. Although these fungi have been traditionally regarded exclusively as pathogens of arthropods, recent studies have demonstrated that they occupy a great diversity of ecological niches. Entomopathogenic fungi are now known to be plant endophytes, plant disease antagonists, rhizosphere colonizers, and plant growth promoters. These newly understood attributes provide possibilities to use fungi in multiple roles. In addition to arthropod pest control, some fungal species could simultaneously suppress plant pathogens and plant parasitic nematodes as well as promote plant growth. A greater understanding of fungal ecology is needed to define their roles in nature and evaluate their limitations in biological control. More efficient mass production, formulation and delivery systems must be devised to supply an ever increasing market. More testing under field conditions is required to identify effects of biotic and abiotic factors on efficacy and persistence. Lastly, greater attention must be paid to their use within integrated pest management programs; in particular, strategies that incorporate fungi in combination with arthropod predators and parasitoids need to be defined to ensure compatibility and maximize efficacy.
Entomopathogenic nematodes (EPNs) in the genera Steinernema and Heterorhabditis are potent MCAs. Substantial progress in research and application of EPNs has been made in the past decade. The number of target pests shown to be susceptible to EPNs has continued to increase. Advancements in this regard primarily have been made in soil habitats where EPNs are shielded from environmental extremes, but progress has also been made in use of nematodes in above-ground habitats owing to the development of improved protective formulations. Progress has also resulted from advancements in nematode production technology using both in vivo and in vitro systems; novel application methods such as distribution of infected host cadavers; and nematode strain improvement via enhancement and stabilization of beneficial traits. Innovative research has also yielded insights into the fundamentals of EPN biology including major advances in genomics, nematode-bacterial symbiont interactions, ecological relationships, and foraging behavior. Additional research is needed to leverage these basic findings toward direct improvements in microbial control
Novel Methods for Analysing Bacterial Tracks Reveal Persistence in Rhodobacter sphaeroides
Tracking bacteria using video microscopy is a powerful experimental approach to probe their motile behaviour. The
trajectories obtained contain much information relating to the complex patterns of bacterial motility. However, methods for
the quantitative analysis of such data are limited. Most swimming bacteria move in approximately straight lines,
interspersed with random reorientation phases. It is therefore necessary to segment observed tracks into swimming and
reorientation phases to extract useful statistics. We present novel robust analysis tools to discern these two phases in tracks.
Our methods comprise a simple and effective protocol for removing spurious tracks from tracking datasets, followed by
analysis based on a two-state hidden Markov model, taking advantage of the availability of mutant strains that exhibit
swimming-only or reorientating-only motion to generate an empirical prior distribution. Using simulated tracks with varying
levels of added noise, we validate our methods and compare them with an existing heuristic method. To our knowledge this
is the first example of a systematic assessment of analysis methods in this field. The new methods are substantially more
robust to noise and introduce less systematic bias than the heuristic method. We apply our methods to tracks obtained
from the bacterial species Rhodobacter sphaeroides and Escherichia coli. Our results demonstrate that R. sphaeroides exhibits
persistence over the course of a tumbling event, which is a novel result with important implications in the study of this and
similar species
Investigation of the gut microbiota and nutrients in regenerative processes in inflammatory bowel diseases: a systematic review
Introduction: Metabolism encompasses the interactions between diet, the microbiome, and cellular enzymatic processes that generate the chemical pathways necessary to sustain life. Epigenetic and nutritional mechanisms are of paramount importance, as approximately 80.0% of patients lose weight during inflammatory bowel diseases (IBD). Objective: It was to develop a systematic review of the main clinical studies on the impact of nutritional treatment on inflammatory bowel diseases. Methods: The PRISMA Platform systematic review rules were followed. The research was carried out from March to April 2025 in the Scopus, Embase, PubMed, Science Direct, Scielo, and Google Scholar databases. The quality of the studies was based on the GRADE instrument and the risk of bias was analyzed according to the Cochrane instrument. Results and Conclusion: A total of 132 articles were found, and 20 articles were evaluated in full and 17 were included and developed in the present systematic review study. Considering the Cochrane tool for risk of bias, the overall assessment resulted in 14 studies with a high risk of bias and 20 studies that did not meet GRADE and AMSTAR-2. Most studies showed homogeneity in their results, with X2=78.4%>50%. It was concluded that important randomized controlled clinical studies in recent years have highlighted the important role of diet modulation in the control and even remission of inflammatory bowel diseases. There was a reduction in persistent intestinal symptoms, balance of the gut microbiota, reduction of inflammatory markers, and improvement in quality of life
Pandrug-Resistant Acinetobacter baumannii Causing Nosocomial Infections in a University Hospital, Taiwan
The rapid emergence (from 0% before 1998 to 6.5% in 2000) of pandrug-resistant Acinetobacter baumannii (PDRAB) was noted in a university hospital in Taiwan. To understand the epidemiology of these isolates, we studied 203 PDRAB isolates, taken from January 1999 to April 2000: 199 from 73 hospitalized patients treated at different clinical settings in the hospital and 4 from environmental sites in an intensive-care unit. Pulsed-field gel electrophoresis analysis and random amplified polymorphic DNA (RAPD) generated by arbitrarily primed polymerase chain reaction of these 203 isolates showed 10 closely related genotypes (10 clones). One (clone 5), belonging to pulsotype E and RAPD pattern 5, predominated (64 isolates, mostly from patients in intensive care). Increasing use of carbapenems and ciprofloxacin (selective pressure) as well as clonal dissemination might have contributed to the wide spread of PDRAB in this hospital
Pesquisa sobre eficiência energética: Um desenho metodológico de estudo teórico e prático para prédios e indústrias da Amazônia / Energy efficiency research: A methodological design of theoretical and practical study for buildings and industries in the Amazon
No presente trabalho os autores apresentam uma proposta de desenho metodológico teórica e prática para desenvolver pesquisa de análise da eficiência energética, aplicável a prédios e indústrias existentes na zona tropical da Amazônia, visando economia de energia e sustentabilidade ao meio ambiente. O desenho, que hierarquiza o conhecimento dos parâmetros da eficiência energética, pode ser utilizado como ferramenta de avaliações energéticas e como material complementar no ensino. Partindo de um estudo de caso, o trabalho se aprofunda na teoria-científica, a partir da utilização dos avanços atuais das técnicas de modelagem e simulação, com o auxílio dos meios informáticos existentes nas universidades e centros de pesquisas. Isto permitiu a otimização na obtenção de resultados, a divulgação e capacitação dos gestores, acarretando diminuição dos consumos energéticos de prédios e indústrias com menor impacto ao meio ambiente amazônico
- …
