175 research outputs found

    Preliminary checklist of the Cerambycidae, Disteniidae, and Vesperidae (Coleoptera) of Peru

    Get PDF
    A preliminary checklist of the Cerambycidae, Disteniidae, and Vesperidae (Coleoptera) of Peru is presented. Within Cerambycidae, we record five subfamilies, 55 tribes, 345 genera and subgenera, and 714 species. Within Disteniidae, we record one tribe, six genera, and 11 species. We also record one subfamily, one tribe, one genus, and two species within Vesperidae. Four new country records are recorded: one species in the tribe Anacolini (Cerambycidae: Prioninae): Cycloprionus flavus Tippmann, 1953; and three species in the tribe Onciderini (Cerambycidae: Lamiinae): Cacostola simplex (Pascoe, 1859); Marensis simplex (Bates, 1865); Trachysomus cavigibba Martins, 1975. In addition, 161 species recorded are known only from Peru

    Effect of Biochar Type, Concentration and Washing Conditions on the Germination Parameters of Three Model Crops

    Get PDF
    Biochar has been recognized as a promising and efficient material for soil amendment. However, its effects on seed germination are variable due to its alkaline pH and/or the presence of phytotoxic substances. In this study, two types of biochar (B1 and B2) were mixed with soil at different concentrations (0%, 5%, 10%, 25%, 50% and 100%, w:w), and both the solid and liquid fractions of these mixtures were tested on the germination of basil, lettuce and tomato seeds. Furthermore, solid fractions subjected to a pre-washing treatment (B1W and B2W) were also investigated for their effects on seed germination. Three germination parameters were then measured: seed germination number (GN), radicle length (RL) and germination index (GI). Biochar B2W at 10% increased both RL and GI in basil by 50% and 70%, respectively, while B1 at 25% increased these parameters in tomato by 25%. No effects or negative effects were recorded for lettuce. Liquid fractions (L1 and L2) generally hampered seed germination, suggesting the presence of potentially water-soluble phytotoxic compounds in biochar. These results point to biochar as a suitable component for germination substrates and highlight that germination tests are critical to select the best performing biochar according to the target crop

    Effects of Wood Distillate (Pyroligneous Acid) on the Yield Parameters and Mineral Composition of Three Leguminous Crops

    Get PDF
    The excessive use of chemical fertilizers and pesticides in agriculture is increasing the demand for novel products to improve the quality of crops in a more sustainable way. Wood distillate (WD, pyroligneous acid) is a by-product obtained during the pyrolysis of plant biomass that can be successfully applied in agriculture due to its ability to enhance the growth, size, and weight of edible plant parts. However, there is little information concerning its plant yield-promoting effects on leguminous crops. The present work investigated the effects of WD on the yield, protein content and mineral composition of chickpea (Cicer arietinum L.), lentil (Lens culinaris L.) and bean (Phaseolus vulgaris L.) plants grown in field conditions. The application of WD showed remarkable yield-promoting effects mostly in lentil plants, which significantly increased plant and shoot biomass, the number and weight of both pods and seeds, as well as the total seed protein content. Furthermore, seeds from WD-treated plants differentially increased the concentration of elements with high nutritional value for human health, including Fe, Ca, Mg and K. These results suggest that the effects of WD among the legumes tested are species-specific and that WD could be an optimal candidate to grow high-yielding legumes with improved seed nutritional quality

    Precipitation extremes over La Plata Basin –Review and new results from observations and climate simulations

    Get PDF
    Monthly and daily precipitation extremes over La Plata Basin (LPB) are analyzed in the framework of the CLARIS-LPB Project. A review of the studies developed during the project and results of additional research are presented and discussed. Specific aspects of analysis are focused on large-scale versus local processes impacts on the intensity and frequency of precipitation extremes over LPB, and on the assessment of specific wet and dry spell indices and their changed characteristics in future climate scenarios. The analysis is shown for both available observations of precipitation in the region and ad-hoc global and regional models experiments. The Pacific, Indian and Atlantic Oceans can all impact precipitation intensity and frequency over LPB. In particular, considering the Pacific sector, different types of ENSO events (i.e. canonical vs Modoki or East vs Central) have different influences. Moreover, model projections indicate an increase in the frequency of precipitation extremes over LPB during El Niño and La NinĂŁ events in future climate. Local forcings can also be important for precipitation extremes. Here, the feedbacks between soil moisture and extreme precipitation in LPB are discussed based on hydric conditions in the region and model sensitivity experiments. Concerning droughts, it was found that they were more frequent in the western than in the eastern sector of LPB during the period of 1962–2008. On the other hand, observations and model experiments agree in that the monthly wet extremes were more frequent than the dry extremes in the northern and southern LPB sectors during the period 1979–2001, with higher frequency in the south.Published211-2304A. Clima e OceaniJCR Journalrestricte

    Intranasal administration of mesenchymal stem cell secretome reduces hippocampal oxidative stress, neuroinflammation and cell death, improving the behavioral outcome following perinatal asphyxia

    Get PDF
    Indexación: Scopus.PerinatalAsphyxia (PA) is a leading cause ofmotor and neuropsychiatric disability associated with sustained oxidative stress, neuroinflammation, and cell death, affecting brain development. Based on a rat model of global PA, we investigated the neuroprotective effect of intranasally administered secretome, derived from human adipose mesenchymal stem cells (MSC-S), preconditioned with either deferoxamine (an hypoxia-mimetic) or TNF-ff+IFN- (pro-inflammatory cytokines). PA was generated by immersing fetus-containing uterine horns in a water bath at 37 ffC for 21 min. Thereafter, 16 ffL of MSC-S (containing 6 ffg of protein derived from 2 ff 105 preconditioned-MSC), or vehicle, were intranasally administered 2 h after birth to asphyxia-exposed and control rats, evaluated at postnatal day (P) 7. Alternatively, pups received a dose of either preconditioned MSC-S or vehicle, both at 2 h and P7, and were evaluated at P14, P30, and P60. The preconditioned MSC-S treatment (i) reversed asphyxia-induced oxidative stress in the hippocampus (oxidized/reduced glutathione); (ii) increased antioxidative Nuclear Erythroid 2-Related Factor 2 (NRF2) translocation; (iii) increased NQO1 antioxidant protein; (iv) reduced neuroinflammation (decreasing nuclearNF-ffB/p65 levels and microglial reactivity); (v) decreased cleaved-caspase-3 cell-death; (vi) improved righting reflex, negative geotaxis, cliff aversion, locomotor activity, anxiety, motor coordination, and recognition memory. Overall, the study demonstrates that intranasal administration of preconditioned MSC-S is a novel therapeutic strategy that prevents the long-term effects of perinatal asphyxia. © 2020 by the authors.https://www.mdpi.com/1422-0067/21/20/780

    Interim 2017/18 influenza seasonal vaccine effectiveness: Combined results from five European studies

    Get PDF
    Between September 2017 and February 2018, influenza A(H1N1)pdm09, A(H3N2) and B viruses (mainly B/Yamagata, not included in 2017/18 trivalent vaccines) co-circulated in Europe. Interim results from five European studies indicate that, in all age groups, 2017/18 influenza vaccine effectiveness was 25 to 52% against any influenza, 55 to 68% against influenza A(H1N1)pdm09, -42 to 7% against influenza A(H3N2) and 36 to 54% against influenza B. 2017/18 influenza vaccine should be promoted where influenza still circulates

    Diverse Applications of Nanomedicine

    Get PDF
    The design and use of materials in the nanoscale size range for addressing medical and health-related issues continues to receive increasing interest. Research in nanomedicine spans a multitude of areas, including drug delivery, vaccine development, antibacterial, diagnosis and imaging tools, wearable devices, implants, high-throughput screening platforms, etc. using biological, nonbiological, biomimetic, or hybrid materials. Many of these developments are starting to be translated into viable clinical products. Here, we provide an overview of recent developments in nanomedicine and highlight the current challenges and upcoming opportunities for the field and translation to the clinic. \ua9 2017 American Chemical Society

    State of the Antarctic and Southern Ocean Climate System

    Get PDF
    This paper reviews developments in our understanding of the state of the Antarctic and Southern Ocean climate and its relation to the global climate system over the last few millennia. Climate over this and earlier periods has not been stable, as evidenced by the occurrence of abrupt changes in atmospheric circulation and temperature recorded in Antarctic ice core proxies for past climate. Two of the most prominent abrupt climate change events are characterized by intensification of the circumpolar westerlies (also known as the Southern Annular Mode) between ∌6000 and 5000 years ago and since 1200–1000 years ago. Following the last of these is a period of major trans-Antarctic reorganization of atmospheric circulation and temperature between A.D. 1700 and 1850. The two earlier Antarctic abrupt climate change events appear linked to but predate by several centuries even more abrupt climate change in the North Atlantic, and the end of the more recent event is coincident with reorganization of atmospheric circulation in the North Pacific. Improved understanding of such events and of the associations between abrupt climate change events recorded in both hemispheres is critical to predicting the impact and timing of future abrupt climate change events potentially forced by anthropogenic changes in greenhouse gases and aerosols. Special attention is given to the climate of the past 200 years, which was recorded by a network of recently available shallow firn cores, and to that of the past 50 years, which was monitored by the continuous instrumental record. Significant regional climate changes have taken place in the Antarctic during the past 50 years. Atmospheric temperatures have increased markedly over the Antarctic Peninsula, linked to nearby ocean warming and intensification of the circumpolar westerlies. Glaciers are retreating on the peninsula, in Patagonia, on the sub-Antarctic islands, and in West Antarctica adjacent to the peninsula. The penetration of marine air masses has become more pronounced over parts of West Antarctica. Above the surface, the Antarctic troposphere has warmed during winter while the stratosphere has cooled year-round. The upper kilometer of the circumpolar Southern Ocean has warmed, Antarctic Bottom Water across a wide sector off East Antarctica has freshened, and the densest bottom water in the Weddell Sea has warmed. In contrast to these regional climate changes, over most of Antarctica, near-surface temperature and snowfall have not increased significantly during at least the past 50 years, and proxy data suggest that the atmospheric circulation over the interior has remained in a similar state for at least the past 200 years. Furthermore, the total sea ice cover around Antarctica has exhibited no significant overall change since reliable satellite monitoring began in the late 1970s, despite large but compensating regional changes. The inhomogeneity of Antarctic climate in space and time implies that recent Antarctic climate changes are due on the one hand to a combination of strong multidecadal variability and anthropogenic effects and, as demonstrated by the paleoclimate record, on the other hand to multidecadal to millennial scale and longer natural variability forced through changes in orbital insolation, greenhouse gases, solar variability, ice dynamics, and aerosols. Model projections suggest that over the 21st century the Antarctic interior will warm by 3.4° ± 1°C, and sea ice extent will decrease by ∌30%. Ice sheet models are not yet adequate enough to answer pressing questions about the effect of projected warming on mass balance and sea level. Considering the potentially major impacts of a warming climate on Antarctica, vigorous efforts are needed to better understand all aspects of the highly coupled Antarctic climate system as well as its influence on the Earth\u27s climate and oceans

    Climate simulations for 1880-2003 with GISS modelE

    Get PDF
    We carry out climate simulations for 1880-2003 with GISS modelE driven by ten measured or estimated climate forcings. An ensemble of climate model runs is carried out for each forcing acting individually and for all forcing mechanisms acting together. We compare side-by-side simulated climate change for each forcing, all forcings, observations, unforced variability among model ensemble members, and, if available, observed variability. Discrepancies between observations and simulations with all forcings are due to model deficiencies, inaccurate or incomplete forcings, and imperfect observations. Although there are notable discrepancies between model and observations, the fidelity is sufficient to encourage use of the model for simulations of future climate change. By using a fixed well-documented model and accurately defining the 1880-2003 forcings, we aim to provide a benchmark against which the effect of improvements in the model, climate forcings, and observations can be tested. Principal model deficiencies include unrealistically weak tropical El Nino-like variability and a poor distribution of sea ice, with too much sea ice in the Northern Hemisphere and too little in the Southern Hemisphere. The greatest uncertainties in the forcings are the temporal and spatial variations of anthropogenic aerosols and their indirect effects on clouds.Comment: 44 pages; 19 figures; Final text accepted by Climate Dynamic
    • 

    corecore