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[1] This paper reviews developments in our
understanding of the state of the Antarctic and Southern
Ocean climate and its relation to the global climate system
over the last few millennia. Climate over this and earlier
periods has not been stable, as evidenced by the
occurrence of abrupt changes in atmospheric circulation
and temperature recorded in Antarctic ice core proxies for
past climate. Two of the most prominent abrupt climate
change events are characterized by intensification of the
circumpolar westerlies (also known as the Southern
Annular Mode) between �6000 and 5000 years ago and
since 1200–1000 years ago. Following the last of these is
a period of major trans-Antarctic reorganization of
atmospheric circulation and temperature between A.D.
1700 and 1850. The two earlier Antarctic abrupt climate
change events appear linked to but predate by several
centuries even more abrupt climate change in the North
Atlantic, and the end of the more recent event is
coincident with reorganization of atmospheric circulation
in the North Pacific. Improved understanding of such
events and of the associations between abrupt climate

change events recorded in both hemispheres is critical to
predicting the impact and timing of future abrupt climate
change events potentially forced by anthropogenic changes
in greenhouse gases and aerosols. Special attention is
given to the climate of the past 200 years, which was
recorded by a network of recently available shallow firn
cores, and to that of the past 50 years, which was
monitored by the continuous instrumental record.
Significant regional climate changes have taken place in
the Antarctic during the past 50 years. Atmospheric
temperatures have increased markedly over the Antarctic
Peninsula, linked to nearby ocean warming and
intensification of the circumpolar westerlies. Glaciers are
retreating on the peninsula, in Patagonia, on the sub-
Antarctic islands, and in West Antarctica adjacent to the
peninsula. The penetration of marine air masses has
become more pronounced over parts of West Antarctica.
Above the surface, the Antarctic troposphere has warmed
during winter while the stratosphere has cooled year-
round. The upper kilometer of the circumpolar Southern
Ocean has warmed, Antarctic Bottom Water across a wide
sector off East Antarctica has freshened, and the densest
bottom water in the Weddell Sea has warmed. In contrast
to these regional climate changes, over most of Antarctica,
near-surface temperature and snowfall have not increased
significantly during at least the past 50 years, and proxy
data suggest that the atmospheric circulation over the
interior has remained in a similar state for at least the past
200 years. Furthermore, the total sea ice cover around
Antarctica has exhibited no significant overall change
since reliable satellite monitoring began in the late 1970s,
despite large but compensating regional changes. The
inhomogeneity of Antarctic climate in space and time
implies that recent Antarctic climate changes are due on
the one hand to a combination of strong multidecadal
variability and anthropogenic effects and, as demonstrated
by the paleoclimate record, on the other hand to
multidecadal to millennial scale and longer natural
variability forced through changes in orbital insolation,
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greenhouse gases, solar variability, ice dynamics, and
aerosols. Model projections suggest that over the 21st
century the Antarctic interior will warm by 3.4� ± 1�C,
and sea ice extent will decrease by �30%. Ice sheet
models are not yet adequate enough to answer pressing
questions about the effect of projected warming on mass

balance and sea level. Considering the potentially major
impacts of a warming climate on Antarctica, vigorous
efforts are needed to better understand all aspects of the
highly coupled Antarctic climate system as well as its
influence on the Earth’s climate and oceans.

Citation: Mayewski, P. A., et al. (2009), State of the Antarctic and Southern Ocean climate system, Rev. Geophys., 47, RG1003,

doi:10.1029/2007RG000231.

1. PRELUDE TO RECENT CLIMATE

[2] In this paper we review the significant roles that

Antarctica and the Southern Ocean play in the global

climate system. This review is a contribution to the pan-

Antarctic research on Antarctica and the global climate

system, carried out under the aegis of the Scientific Com-

mittee on Antarctic Research (SCAR), which is an interdis-

ciplinary body of the International Council for Science.

[3] By way of introduction, we show some of the main

elements of the geographical and climate-related character-

istics of Antarctica and the Southern Ocean in Figures 1 and

2, respectively. The processes occurring in these regions are

known to play a significant role in the global climate

system. The Southern Ocean is the world’s most biologi-

cally productive ocean and a significant sink for both heat

and CO2, making it critical to the evolution of past, present,

and future climate change. The Southern Ocean is the site

for the production of the coldest, densest water that partic-

ipates in global ocean circulation and so is of critical

importance to climate change. The strong westerly winds

that blow over the Southern Ocean drive the world’s largest

and strongest current system, the Antarctic Circumpolar

Current (ACC), and are recognized to be the dominant

driving force for the global overturning circulation [Pickard

and Emery, 1990; Klinck and Nowlin, 2001].

[4] Today, Antarctica holds 90% of the world’s fresh

water as ice. Along with its surrounding sea ice, it plays a

major role in the radiative forcing of high southern latitudes

and is an important driving component for atmospheric

circulation. Its unique meteorological and photochemical

environment led to the atmosphere over Antarctica experi-

encing the most significant depletion of stratospheric ozone

on the planet, in response to the stratospheric accumulation

of man-made chemicals produced largely in the Northern

Hemisphere. The ozone hole influences the climate locally

and is itself influenced by global warming.

[5] The climate of the Antarctic region is profoundly

influenced by its ice sheet, which reaches elevations of over

4000 m. This ice reduces Southern Hemisphere temper-

atures and stabilizes the cyclone tracks around the continent.

The ice sheet is a relatively recent feature geologically,

developing as Antarctic climate changed from temperate

to polar, and from equable to strongly cyclic, over the last

50 million years (Ma).

[6] Modern climate over the Antarctic and the Southern

Ocean results from the interplay of the ice sheet, ocean, sea

ice, and atmosphere and their response to past and present

climate forcing. Our review assesses the current state of the

Antarctic climate, identifying key processes and cycles. One

aim is to try and separate signals of human-induced change

from variations with natural causes. Another is to identify

areas worth special attention in considering possible future

research.

[7] To fully understand the operation of this system as the

basis for forecasting future change we begin with the

development of the Antarctic ice sheet far back in geolog-

ical time (Figures 3 and 4). In the high CO2 world of

Cretaceous and early Cenozoic times, when atmospheric

CO2 stood at between 1000 and 3000 ppm, global temper-

atures were 6� or 7�C warmer than at present, gradually

peaking around 50 Ma ago with little or no ice on land.

Superimposed on this high CO2 world, deep-sea sediments

have provided evidence of the catastrophic release of more

than 2000 gigatonnes of carbon into the atmosphere from

methane hydrate around 55 Ma ago, raising global temper-

atures a further �4�–5�C, though they recovered after

�100,000 years [Zachos et al., 2003, 2005].

[8] The first continental ice sheets formed on Antarctica

around 34 Ma ago [Zachos et al., 1992], when global

temperature was around 4�C higher than today, as a conse-

quence of a decline in atmospheric CO2 levels [DeConto

and Pollard, 2003; Pagani et al., 2005]. The early ice sheets

reached the edge of the Antarctic continent, although they

were warmer and thinner than today’s. They were dynamic,

fluctuating on Milankovitch frequencies (20 ka, 41 ka, and

100 ka) in response to variations in the Earth’s orbit around

the Sun, causing regular variations in climate and sea level

[Naish et al., 2001; Barrett, 2007]. Recent evidence from

ice-rafted debris suggests that glaciers also existed on

Greenland at this time [Eldrett et al., 2007].

[9] Further cooling around 14 Ma ago led to the current

thicker and cooler configuration of the Antarctic ice sheet

[Flower and Kennett, 1994], and subsequently, the first ice

sheets developed in the Northern Hemisphere on Greenland

around 7 Ma ago [Larsen et al., 1994]. The Antarctic ice

sheet is now considered to have persisted intact through the

early Pliocene warming from 5 to 3 Ma [Kennett and

Hodell, 1993; Barrett, 1996], though temperatures several

degrees warmer than today around the Antarctic margin are

implied by coastal sediments [Harwood et al., 2000] and

offshore cores [Whitehead et al., 2005] and from diatom

ooze from this period recently cored from beneath glacial

sediments under the McMurdo Ice Shelf [Naish et al.,

2007]. Global cooling from around 3 Ma [Ravelo et al.,

2004] led to the first ice sheets on North America and NW

Europe around 2.5 Ma ago [Shackleton et al., 1984]. These

ice sheets enhanced the Earth’s climate response to orbital
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forcing, taking us to the Earth’s present ‘‘ice house’’ state

(Figure 4), which for the last million years (Figure 5) has

been alternating over �100,000 year long cycles including

long (�90,000 years) glacials, when much of the Northern

Hemisphere was ice covered, global average temperature

was around 5�C colder, and sea level was 120 m lower than

today, and much shorter warm interglacials like that of the

last �10,000 years, with sea levels near or slightly above

those of the present.

[10] Changes in the atmospheric gases CO2, CH4, and

N2O and temperature through the past 650,000 years

[Siegenthaler et al., 2005; Spahni et al., 2005] of these

glacial/interglacial cycles are recorded with remarkable

fidelity [e.g., Etheridge et al., 1992] in deep ice cores

recovered from Antarctica. The cores reveal both the

responsiveness of the ice sheet to changes in orbitally

induced insolation patterns and the close association be-

tween atmospheric greenhouse gases and temperature

[EPICA Community Members, 2004]. They also demon-

strate the narrow band within which the Earth’s climate and

its atmospheric gases have oscillated over at least the last

800,000 years through eight glacial cycles, with CO2 values

oscillating between 180 and 300 ppmv. Global average

temperatures, assessed through a combination of paleocli-

mate records, varied through a range of 5�C (between

average interglacial values of around 15�C and average

glacial values of 10�C [Severinghaus et al., 1998]).

[11] The Intergovernmental Panel on Climate Change

(IPCC) Fourth Assessment Report [Intergovernmental Panel

on Climate Change (IPCC), 2007] reviewed the ways in

which the climate worldwide has changed in response to

rising levels of CO2 in the atmosphere, which, at 380 ppm,

are currently higher than at any time in the last 800,000

years [EPICA Community Members, 2004] and most likely

in the last 25 Ma [Royer, 2006].

[12] Knowledge of the phasing of climate events on

regional to hemispheric scales is essential to understanding

the dynamics of the Earth’s climate system. Correlations

based on the similarities seen in Greenland and Antarctic ice

core methane signals (Figure 6) suggest that climatic events

of millennial to multicentennial duration are correlated

between the north and south polar regions as described in

the following results from EPICA Community Members

[2006]. Antarctic warm events correlate with but precede

Greenland warm events. The start of each warming signal in

the Antarctic takes place when Greenland is at its coldest,

the period when armadas of icebergs crossed the North

Atlantic in so-called Heinrich events. Moreover, warming in

the Antarctic is gradual whereas warming in the associated

Greenland signal is abrupt. These relationships are inter-

preted as reflecting connection between the two hemi-

spheres via the ocean’s meridional overturning circulation

(MOC). The lag reflects the slow speed of the MOC, with

complete ocean overturning taking up to 1000 years. The

data also show a strong relationship between the magnitude

of each warming event in the Antarctic and the duration of

the warm period that follows each abrupt warming event in

Greenland [EPICA Community Members, 2006]. This rela-

tionship is interpreted to reflect the extent to which the

MOC is reduced, with reduced overturning assumed to lead

to the retention of more heat in the Southern Ocean. These

associations are indirectly supported by marine sediment

records off Portugal that reveal changes in deep water

masses related to Antarctic Bottom Water formation and

in Atlantic surface water, at the same time as the events seen

in the central Greenland deep ice cores [Shackleton et al.,

2000]. The cause(s) of these millennial-scale climate events

are not fully understood, but slowing of the MOC has been

attributed to North Atlantic meltwater flood events and/or to

massive iceberg discharges (Heinrich events) that slow the

formation of North Atlantic Deep Water. Changes in the

Antarctic ice sheet and sea ice extent can also affect

Southern Ocean heat retention and ocean circulation [Stocker

and Wright, 1991; Knorr and Lohman, 2003].

[13] As shown in Figures 7 and 8, over the past 12,000

years (Holocene), there have been several abrupt changes in

Antarctic climate despite the fact that this period is more

stable climatically than the preceding glacial period

(Figure 6). These abrupt changes in Holocene Antarctic

climate, as well as the abrupt changes in Holocene climate

recorded in a global array of paleoclimate records covering

the same period, appear to be the product of short-term

fluctuations in solar variability, aerosols, and greenhouse

gases superimposed on longer-term changes in insolation,

greenhouse gases, and ice sheet dynamics [Mayewski et al.,

2004a]. There has been sufficient variability during the

Holocene to cause major disruptions to ecosystems and

civilizations [Mayewski et al., 2004a], demonstrating that

this natural variability must be taken into account in under-

standing modern climate and the potential for future climate

change. The relation between the ice sheet and climate is not

Figure 1. Geographical locations of some key places and
regions in Antarctica and the Southern Ocean.
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simple. For example, the current configuration of the Ant-

arctic ice sheet has as its underpinning a multimillennial-

scale lagged response to climate forcing. Grounding lines in

the marine-based parts of the West Antarctic ice sheet, at the

head of the Ross Ice Shelf, started to retreat to their current

position from a position close to the edge of the current Ross

Ice Shelf 7000–9000 years ago [Conway et al., 1999].

Synthesis of ice core isotope proxy records for temperature

Figure 2a. Some key elements of the Antarctic and Southern Ocean climate system. (top left) The
bathymetry and topography of Antarctica and the Southern Ocean, with the main fronts of the Antarctic
Circumpolar Current marked over the Southern Ocean; (top right) wind vectors at 10 m height, with wind
speed colored as background, where wind vector and speed are long-term means from European Centre
for Medium-Range Weather Forecasts (ECMWF) 40-year reanalysis (ERA-40); (bottom left) the loading
pattern of the El Niño–Southern Oscillation phenomenon over Antarctica and the Southern Ocean,
defined as the correlation of the Southern Oscillation Index with surface atmospheric pressure; and
(bottom right) as for Figure 2a (bottom left) but for the Southern Annular Mode index.
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reveals that this massive retreat was preceded by an early

Holocene climatic optimum between 11,500 and 9000 years

ago [Masson et al., 2000].

[14] Comparison of similarly resolved and analyzed ice

core records from Greenland (Greenland Ice Sheet Project 2

(GISP2)) and West Antarctica (Siple Dome) reveals evi-

dence related to phasing, magnitude, and possible forcing of

changes in atmospheric circulation and temperature over the

Holocene (Figures 7 and 8, core locations shown in

Figure 1). Atmospheric circulation and temperature recon-

structions are based on ice core proxies referenced in the

following text and in Figures 7 and 9. These observations

are relevant to understanding not only the forcing of climate

Figure 2b. Some key elements of the Antarctic climate system. (top left) Rate of accumulation of
precipitation over Antarctica; (top right) the seasonal maximum and minimum of the sea ice field;
(bottom left) spatial variability of sodium concentration compiled from snow samples and firn cores; and
(bottom right) as for Figure 2b (bottom left) but for sulphate concentration. (Sodium is predominantly a
sea-salt aerosol, while sulphate is often used to reconstruct marine bioactivity and volcanic eruptions.)
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change over the polar regions but also the implications of

change over the polar regions for climate at the global scale.

[15] With respect to changes in atmospheric circulation,

Figure 7 shows the following:

[16] 1. The North Atlantic climate record (GISP2 K+,

Na+, and Ca++ proxies for Siberian High, Icelandic Low,

and northern circumpolar westerlies, respectively) displays

more frequent and larger shifts in atmospheric circulation

than does the Antarctic climate record (Siple Dome Na+ and

Ca++ proxies for Amundsen Sea Low and southern circum-

polar westerlies, respectively) [Mayewski and Maasch,

2006]. This finding is similar to that seen between Green-

land and Antarctica in millennial-scale events from glacial

age ice core records (Figure 6) [EPICACommunity Members,

2006].

[17] 2. The North Atlantic climate record (GISP2 K+,

Na+, and Ca++ proxies for Siberian High, Icelandic Low,

and northern circumpolar westerlies, respectively) generally

displays more abrupt onset and decay of multicentennial-

scale events than does the Antarctic climate record (Siple

Dome Na+ and Ca++ proxies for Amundsen Sea Low and

southern circumpolar westerlies, respectively) [Mayewski

and Maasch, 2006] similar to the glacial age abrupt change

record (Figure 6) [EPICA Community Members, 2006].

[18] 3. The Siple Dome and GISP2 ice core proxies for

northern and southern circumpolar westerlies (Ca++) show

considerable similarity in event timing with major intensi-

fication periods between �6000 and 5000 years ago and

starting �1200–600 years ago, although as noted above the

Antarctic events start earlier and less abruptly than those in

Greenland.

[19] 4. The most dramatic changes in atmospheric circu-

lation during the Holocene noted in the Antarctic are (1) the

abrupt weakening of the southern circumpolar westerlies

(Siple Dome Ca++) �5200 years ago and (2) intensification

of the westerlies and the deepening of the Amundsen Sea

Low (Siple Dome Na+) starting �1200–1000 years ago.

[20] With respect to changes in temperature, Figure 7

shows the following:

[21] 1. The prominent temperature decrease �8200 years

ago over the North Atlantic, noted in the GISP2 d18O proxy

for temperature, is subdued in the Siple Dome d18O tem-

Figure 3. Main climatic events of the last 65 Ma: the Antarctic context.

Figure 4. Change in average global temperature over the
last 80 Ma, plus future rise in temperature to be expected
from energy use projections and showing the Earth warming
back into the ‘‘greenhouse world’’ typical of earlier times
more than 34 Ma ago [Barrett, 2006]. The temperature
curve of Crowley and Kim [1995] is modified to show the
effect of the methane discharge at 55 Ma [Zachos et al.,
2003].
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Figure 5. Main climatic events of the last 1 Ma: the Antarctic context.

Figure 6. Methane (CH4) synchronization of the ice core records of d18O as a proxy for temperature
reveals one-to-one association of Antarctic warming (Antarctic isotope maxima (AIM)) events with
corresponding Greenland cold (stadial) events (Dansgaard/Oeschger (DO)) covering the period 10,000–
60,000 years ago. EDML, EPICA core from Dronning Maud Land Antarctica; Byrd, core from West
Antarctica; EDC, core from East Antarctica; NGRIP, core from north Greenland. Gray bars refer to
Greenland stadial periods. Greenland CH4 composite curve is blue; EDML CH4 signal is pink. Figure
modified from EPICA Community Members [2006] by H. Fischer.
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Figure 7
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perature proxy series, although it is suggested in a compos-

ite isotope record covering East Antarctica [Masson et al.,

2000], indicating that this event is not as prominent in the

southern as in the northern polar regions.

[22] 2. Siple Dome d18O temperature reconstructions

reveal notable cooling between �6400 and 6200 years

ago, followed by relatively milder temperatures over East

Antarctica 6000–3000 years ago [Masson et al., 2000],

lasting until �1200 years ago in the Siple Dome area.

[23] 3. The Siple Dome and GISP2 d18O proxies for

temperature show a flattening and a decline, respectively, in

temperature starting �1200–1000 years ago, followed by

warming in the last few decades; the recent warming in the

Siple Dome record is the greatest of the last �10,000 years.

[24] Several interacting factors potentially provide the

climate forcing for decadal to centennial-scale and longer

Holocene climate change, as demonstrated by their associ-

ation in timing with climate change events. While further

research is needed to go from associations in timing to

mechanisms for forcing, identifying these associations is an

essential first step. The most prominent associations noted

from Figure 7 are the following:

[25] Intensification of atmospheric circulation in the

Northern Hemisphere (stronger Siberian High and northern

circumpolar circumpolar westerlies and deeper Icelandic

Low) and to a lesser degree in the Southern Hemisphere

(stronger circumpolar westerlies and deeper Amundsen Sea

Low) occurs �8200–8400 years ago [Mayewski et al.,

2004b; Mayewski and Maasch, 2006]. This event is asso-

ciated with cooling over East Antarctica [Masson et al.,

2000] and, as seen in Figure 7, with a drop in CH4, a long-

term decline in CO2, and an increase in solar energy output

(based on the 14C proxy for solar variability). Between

�8200 and 7800 years ago, there is a decrease in precip-

itation in equatorial Africa suggested to have been the

consequence of an expanding polar cell and consequent

displacement of moisture-bearing winds [Stager and

Mayewski, 1997]. Intensification of the southern circumpo-

lar westerlies �6400–5600 years ago is preceded by cool-

ing in West Antarctica �6400 – 6200 years ago.

Intensification of the Northern Hemisphere westerlies fol-

lows abruptly at �6000–5000 years ago. All of these

changes coincide with a reverse in the trend of orbitally

forced insolation, a small drop in CH4, a slight rise in CO2,

and a decrease in solar energy output and are within the

period of early collapse of the Ross Sea ice sheet [Conway

et al., 1999]. Intensification of the Northern Hemisphere

westerlies is coincident with intensification of the Icelandic

Low and the Siberian High. Another period of intensifica-

tion of southern circumpolar westerlies and the Amundsen

Sea Low commences �1200–1000 years ago, accompanied

by relatively cooler conditions over East Antarctica [Mas-

son et al., 2000] and West Antarctica (Siple Dome). This

change is associated with a decrease in solar energy output,

a drop in CO2, and increased frequency of volcanic source

sulphate aerosols over Antarctica. A satisfactory explana-

tion for the forcing of these Holocene Antarctic climate

changes remains elusive, though the link to variations in

solar energy output is highly suggestive. More detailed

examination of forcing over the last 2000 years using the

ice cores in Figure 7 and other paleoclimate records sup-

ports the close association in timing between changes in

atmospheric circulation and solar energy output [Maasch et

al., 2005].

[26] The abrupt climate change event commencing

�1200–1000 years ago is the most significant Antarctic

climate event of the last �5000 years [Mayewski and

Maasch, 2006]. Its onset is characterized by strengthening

Figure 7. Examination of potential controls on and sequence of Antarctic Holocene climate change compared to
Greenland climate change using 200 year Gaussian smoothing of data from the following ice cores: Greenland Ice Sheet
Project 2 (GISP2) ice core, K+ proxy for the Siberian High [Meeker and Mayewski, 2002]; GISP2 Na+ proxy for the
Icelandic Low [Meeker and Mayewski, 2002]; GISP2 Ca++ proxy for the Northern Hemisphere westerlies [Mayewski and
Maasch, 2006]; Siple Dome (West Antarctic) Ca++ ice core proxy for the Southern Hemisphere westerlies [Yan et al.,
2005]; Siple Dome Na+ proxy for the Amundsen Sea Low [Kreutz et al., 2000]; GISP2 d18O proxy for temperature
[Grootes and Stuiver, 1997]; Siple Dome d18O proxy for temperature [Mayewski et al., 2004a; J. White, unpublished data,
2005]; timing of the Lake Agassiz outbreak that may have initiated Northern Hemisphere cooling at �8200 years ago
[Barber et al., 1999]; global glacier advances [Denton and Karlén, 1973; Haug et al., 2001; Hormes et al., 2001];
prominent Northern Hemisphere climate change events (shaded zones [Mayewski et al., 2004a]); winter insolation values
(W m�2) at 60�N (black curve) and 60�S latitude (blue curve) [Berger and Loutre, 1991]; summer insolation values (W m�2)
at 60�N (black curve) and 60�S latitude (blue curve) [Berger and Loutre, 1991]; proxies for solar output (D14C residuals
[Stuiver et al., 1998], raw data (light line) with 200 year Gaussian smoothing (bold line)); atmospheric CH4 (ppbv)
concentrations in the GRIP ice core, Greenland [Chappellaz et al., 1993]; atmospheric CO2 (ppmv) concentrations in the
Taylor Dome, Antarctica, ice core [Indermühle et al., 1999]; and volcanic events marked by SO4

2� residuals (ppb) in the
Siple Dome ice core, Antarctica [Kurbatov et al., 2006], and by SO4

2� residuals (ppb) in the GISP2 ice core [Zielinski et al.,
1994]. Timing of Northern Hemisphere deglaciation is from Mayewski et al. [1981], and retreat of Ross Sea Ice Sheet is
from Conway et al. [1999]. Figure modified from Mayewski et al. [2004a, 2004b]. Green bar denotes the 8800–8200 year
ago event seen in many globally distributed records associated with a negative D14C residual [Mayewski et al., 2004a].
Yellow denotes events from 6400 to 5200 years ago, events from 3400 to 2400 years ago, and events since 1200 years ago
seen in many globally distributed records associated with positive D14C residuals [Mayewski et al., 2004a]. Map shows
location of GISP2, Siple Dome, Icelandic Low, Siberian High, Amundsen Sea Low, Intertropical Convergence Zone, and
westerlies in both hemispheres.
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of the Amundsen Sea Low (Siple Dome Na+) and the

southern circumpolar westerlies (Siple Dome Ca++), with

cooling both at Siple Dome (d18O), until recent decades,
and in the East Antarctic composite proxy temperature

record [Masson et al., 2000]. This event provides the

underpinning for centennial and perhaps shorter-scale nat-

ural variability upon which future climate change over

Antarctica might operate. A comparison of reconstructions

of Northern and Southern Hemisphere temperature [Mann

and Jones, 2003] and ice core proxies for Northern and

Southern Hemisphere atmospheric circulation referred to in

Figures 7 and 9 covering the last 2000 years, when these

records are most precisely dated (±10 years), demonstrates

that major changes in temperature and circulation intensity

are associated, such that cooler temperatures coincide with

more intense atmospheric circulation and warmer temper-

atures with milder circulation [Mayewski and Maasch,

2006]. Further, until the warming of the last few decades,

major changes in temperature were preceded by or coinci-

dent with changes in atmospheric circulation. Modern

warming is not preceded by or coincident with change in

atmospheric circulation, suggesting that recent warming is

not operating in accordance with the natural variability of

the last 2000 years and that therefore, modern warming is a

consequence of nonnatural (anthropogenic) forcing

[Mayewski and Maasch, 2006].

[27] Comparison of ice core proxies for atmospheric

circulation and temperature between West Antarctica (Siple

Figure 7. (continued)
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Dome) and East Antarctica (Law Dome) reveal that East

and West Antarctica have operated inversely with respect to

temperature and to strength of atmospheric circulation on

multidecadal to centennial scales (Figure 9) [Mayewski et

al., 2004a]. The exception is a climate change event

commencing �A.D. 1700 and ending by �A.D. 1850,

during which circulation and temperature acted synchro-

nously in both regions. This cooling period is coincident

with an increase in the frequency of El Niño events

impacting Antarctica as determined from the distribution

of methane sulphonate indicative of a supply of methane

sulphonic acid (MSA) in a South Pole ice core [Meyerson et

al., 2002] and with an increase in solar energy output. The

close of this cooling event coincides with the onset of the

modern rise in CO2, followed by the warmest temperatures

of the last >700 years in West Antarctica based on the d18O
Siple Dome ice core record [Mayewski et al., 2004b] and

indeed of the last 10,000 years (Figure 7). The close of the

cooling event is coincident with a major transition from

zonal to mixed flow in the North Pacific [Fisher et al.,

2004], suggesting a global-scale association between Ant-

arctic and North Pacific climate. Further investigation into

this most recent abrupt climate change event to impact

Figure 8. Main climatic events of the last 12,000 years: the Antarctic context. NH, Northern
Hemisphere; SH, Southern Hemisphere; WA, West Antarctica; EA, East Antarctica; MDV, McMurdo
Dry Valleys.
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Figure 9. The 25 year running mean of Siple Dome (SD, red) and Law Dome (DSS, blue) Na (ppb)
used as a proxy for the Amundsen Sea Low (ASL) and East Antarctic High (EAH), respectively, with
estimated sea level pressure developed from calibration with the instrumental and National Centers for
Environmental Prediction reanalysis (based on Kreutz et al. [2000] and Souney et al. [2002]). Twenty-
five year running mean SD (red) and DSS (blue) d18O (%) used as a proxy for temperature, with
estimated temperature developed from calibration with instrumental mean annual and seasonal
temperature values [Van Ommen and Morgan, 1996; Steig et al., 2000]. Frequency of El Niño polar
penetration (51-year Gaussian filter, black) based on calibration between the historical El Niño frequency
record [Quinn et al., 1987; Quinn and Neal, 1992] and South Pole methane sulphonate [Meyerson et al.,
2002]. Reprinted from Mayewski et al. [2004b] with permission of the International Glaciological
Society. D14C series used as an approximation for solar variability [Stuiver and Braziunas, 1993]; values
younger than 1950 are bomb contaminated. CO2 from DSS ice core [Etheridge et al., 1996]. Darkened
area shows 1700–1850 year era climate anomaly discussed in section 1.
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Antarctica could have relevance to events that might occur

as polar climates adjust to future warming.

[28] Information about Antarctic climate change also

comes from investigations of the closed basin lakes in the

McMurdo Dry Valleys region in southern Victoria Land,

which provide a detailed picture of variations in the hydro-

logical system in this region over the past 3000–4000 years

(Figure 8). These lakes respond quickly and dramatically to

changes in summer temperatures, which are associated with

changes in the input of water from melting glaciers in the

area. Lake Bonney and Lake Vida, the more inland lakes in

the McMurdo region, began to refill at �3000–2800 years

ago, some �2000 years before the refilling of more coastal

lakes [Doran et al., 2003; Poreda et al., 2004]. The more

coastal lakes, lakes Fryxell, Hoare, and Vanda, reached

extremely low levels by 1200–1000 years ago [Wilson,

1964; Lyons et al., 1998; Poreda et al., 2004], then began to

refill when the Ross Sea climate started to warm [Leventer

et al., 1993]. Lake Wilson in the Darwin Glacier area at

80�S appears to have undergone a similar drying event prior

to �1000 years ago with increased meltwater input after this

time [Webster et al., 1996]. The timing of these climatically

induced fluctuations in lake levels can also be recognized

from studies of abandoned Adélie penguin rookeries along

the Victora Land coast, based on the dependence of these

penguins on sea ice extent in the modern environment

[Baroni and Orombelli, 1994]. Investigations of the distri-

butions of Adélie penguin rookeries suggest a ‘‘penguin

optimum’’ associated with a warmer climate and less sea ice

between 4000 and 3000 years ago [Baroni and Orombelli,

1994], but this ‘‘optimum’’ ended abruptly �3000 years

ago, as the inland lakes began to fill and the coastal lakes

began to decrease in size. Abandoned rookeries were

reoccupied between 1200 and 600 years ago, also support-

ing warming along the southern Victoria Land coast [Baroni

and Orombelli, 1994]. All these data suggest that the filling

of the more inland lakes occurred at the end of a climatic

optimum, and they did not decline during the subsequent

cooling phase that followed or they filled during a time of

climatic deterioration along the coastal areas of Victoria

Land [Poreda et al., 2004].

2. LAST 50–200+ YEARS

[29] Several SCAR activities have focused on under-

standing the climate of the last 50–200+ years, and many

new data are now emerging. Here we focus on measured

and estimated changes in (1) atmospheric temperature, (2)

atmospheric circulation, (3) atmospheric chemistry, (4)

ocean temperature and salinity, (5) ocean circulation, (6)

sea ice and ice shelves, and (7) the mass balance of the

Antarctic ice sheet and of glaciers in the Antarctic Penin-

sula, the sub-Antarctic islands, southern South America, and

New Zealand, as described in section 2.7.

2.1. Changes in Atmospheric Temperature

[30] The Antarctic has undergone complex temperature

changes in recent decades [Turner et al., 2005a] (Figure 10).

The largest annual warming trends are found on the western

and northern parts of the Antarctic Peninsula, with Faraday/

Vernadsky having the largest statistically significant (<5%

level) trend at +0.56�C/decade from 1951 to 2000. Rothera

station, some 300 km to the south of Faraday, has a larger

annual warming trend, but the shortness of the record and

the large interannual variability of the temperatures render

the trend statistically insignificant. Although the region of

marked warming extends from the southern part of the

western Antarctic Peninsula north to the South Shetland

Islands, the rate of warming decreases north away from

Faraday/Vernadsky (50 year long record), with the long

record from Orcadas (100 year long record) in the South

Orkney Islands showing a warming trend of only +0.20�C/
decade.

[31] The large winter season warming of 5�C over

50 years at Faraday is believed to be associated with a

significant decrease in winter sea ice over the Amundsen-

Bellingshausen Sea. The reason why there was more sea ice

in the 1950s and 1960s is not known with certainty but may

have been linked to weaker/fewer storms to the west of the

peninsula and greater atmospheric blocking. A greater

frequency of blocking anticyclones would have meant

weaker northerly winds to the west of the Antarctic Penin-

sula, allowing the sea ice to advance farther north during the

winter and giving colder temperatures on the western side of

the Peninsula.

[32] On the eastern side of the peninsula the greatest

warming is during the summer months and appears to be

associated with the strengthening of the circumpolar west-

erlies that has taken place as the Southern Hemisphere

Annular Mode has shifted into its positive phase as

evidenced in the instrumental record at least since the

mid-1970s [Marshall et al., 2006]. Stronger winds have

resulted in more relatively warm, maritime air masses

crossing the peninsula and reaching the low-lying ice

shelves, as well as the adiabatic descent and warming of

these winds crossing the Antarctic Peninsula topography.

[33] Around the rest of the coastal region of the continent

there have been few statistically significant changes in

surface temperature over the last 50 years (Figure 10).

However, Amundsen-Scott Station at the South Pole has

shown a statistically significant cooling in recent decades

that is thought to be a result of fewer maritime air masses

penetrating into the interior of the continent. Unfortunately

there is no long-term instrumental measurement record for

the area of the Siple Dome, in West Antarctica, to compare

with the warming seen in the ice core record (Figure 9). The

nearest such instrumental record is at McMurdo Station,

where slight warming is apparent (Figure 10).

[34] Large-scale calibrations between satellite-deduced

surface temperature and ice core proxies for temperature

are also now available [Schneider and Steig, 2002]. Recon-

struction of temperatures over the past 200 years, based on

eight records distributed over the ice sheet, suggests no

discernible trend over recent decades, but do note a 0.2�C
warming for the past century [Schneider et al., 2006].
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[35] Where ice cores are not available, lake levels provide

information on climate. Because lake levels are extremely

sensitive to summer temperature and albedo changes, fluc-

tuations in their levels aid our understanding of climate

change in the McMurdo Dry Valleys region. Most lakes

there rose from 0.7 to 3.3 m/decade in the 1970s–1990s

[Chinn, 1993], and Lake Wilson increased in volume by

over 50% during that period [Webster et al., 1996]. There is

some evidence that Lake Bonney has been increasing in size

since the early 1900s [Chinn, 1993]. A summer cooling

trend during the 1990s significantly slowed this rising trend

in lake levels [Doran et al., 2002]. It has been suggested

that the summer cooling was caused by a change in

atmospheric circulation driven by the El Niño–Southern

Oscillation (ENSO), resulting in a decrease in marine air

mass influences reaching the dry valleys and an increased

inflow to the region from West Antarctica via the Ross Ice

Shelf [Bertler et al., 2004].

[36] Analysis of Antarctic radiosonde temperature pro-

files indicates that there has been a warming of the winter

troposphere and cooling of the stratosphere over the last

30 years. The data show that regional midtropospheric

Figure 10. Annual and seasonal near-surface temperature trends for stations with long in situ records.
The trends are for the full length of each record. The colors indicate the statistical significance of the
trends. Trends were computed for the full length of each record. Most stations started reporting around
the time of the International Geophysical Year in 1957/1958. Autocorrelation was taken into account in
computing significance levels.
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temperatures have increased most around the 500 hPa level

with statistically significant changes of 0.5–0.7�C/decade
(Figure 11) [Turner et al., 2006]. From 1985 to 2002, the

lower part of the stratosphere cooled by 10�C, and the time

of decay of the polar vortex shifted from early November

during the 1970s to late December in the 1990s [Thompson

and Solomon, 2002].

2.2. Changes in Atmospheric Circulation Over
Antarctica and the Southern Ocean

[37] The Antarctic atmosphere is cold and dry. There is a

strong horizontal temperature gradient between the conti-

nent and the ocean and a strong vertical temperature

gradient (inversion) as a result of the intense radiative

cooling during the winter. For this reason, near-surface

temperatures are particularly sensitive to low-level atmo-

spheric circulation [Van den Broeke, 2000]. Baroclinic and

depression activity peak in March and September, leading to

a twice yearly contraction and expansion of the circumpolar

low-pressure belt, known as the Semiannual Oscillation

(SAO). Since the mid-1970s a significant weakening of

the SAO has been observed, leading to cooling in coastal

Antarctica in May to June [Van den Broeke, 2000].

[38] The principal mode of variability in the atmospheric

circulation of the extratropics and high latitudes has been

referred to as the Southern Annular Mode (SAM) (also

Figure 11. Trends in the 500 hPa temperature over 1979–2001 from the ECMWF 40 year reanalysis,
showing tropospheric warming at �5 km. The contours are �C/decade. From Turner et al. [2006].
Reprinted with permission from AAAS.
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known as the high-latitude mode or the Antarctic Oscilla-

tion). The SAM has a zonally symmetric or annular struc-

ture, with synchronous anomalies of opposite sign in high

latitudes and midlatitudes, although a zonal wave number

three pattern is superimposed [Lefebvre et al., 2004]. It can

be seen in many parameters measured at high latitudes, such

as surface pressure (e.g., the pressure difference between

latitudes 40 and 65�S) and temperature, geopotential height,

and zonal wind. Observational and modeling studies have

shown that the SAM contributes a large proportion (�35%)

of the Southern Hemisphere climate variability on a large

range of time scales, from daily [e.g., Baldwin, 2001] to

decadal [Kidson, 1999], and is also likely to drive the large-

scale circulation of the Southern Ocean.

[39] Over the last 50 years the SAM has shifted more into

its positive phase with decreases of surface pressure over

the Antarctic and corresponding increases at midlatitudes

[Marshall, 2003; Thompson and Solomon, 2002]. This has

resulted in an increase in the westerlies over the Southern

Ocean, with consequent oceanographic implications. These

include a likely intensification of the eddy field [Meredith

and Hogg, 2006] and a reduction of the efficiency of the

Southern Ocean CO2 sink associated with changes in

upwelling and mixing [Le Quéré et al., 2007]. The trend

has also been linked to warming of the Antarctic Peninsula

region and a general cooling of the Antarctic continent

[Marshall et al., 2002, 2006; Van den Broeke and van

Lipzig, 2003]. Van den Broeke and van Lipzig [2004] argued

that the reason for the winter cooling over East Antarctica

during periods of high SAM index is greater thermal

isolation of Antarctica, due to increase zonal flow, de-

creased meridional flow, and intensified temperature inver-

sion on the ice sheet due to weaker near-surface winds.

They showed that a strengthening circumpolar vortex leads

to a pronounced deepening of the Amundsen Sea Low,

cooling of most of Antarctica with the exception of the

Antarctic Peninsula, as well as drier conditions over large

parts of West Antarctica, the Ross Ice Shelf, and the

Lambert Glacier region and wetter conditions elsewhere.

Other studies have demonstrated the influence of the SAM

on spatial patterns of precipitation variability in Antarctica

[Genthon et al., 2003] and southern South America

[Silvestri and Vera, 2003].

[40] A number of modeling studies attribute recent pos-

itive summer changes in the SAM to ozone depletion

[Sexton, 2001; Thompson and Solomon, 2002; Gillett and

Thompson, 2003]. The polar vortex is most pronounced in

the winter stratosphere when the air above the continent is

extremely cold. However, the loss of springtime ozone as a

result of the ‘‘ozone hole’’ has also cooled the stratosphere

through the spring and summer months. This in turn has

resulted in lowmean sea level pressure in the Antarctic at this

time of year, thereby shifting the SAM into its positive phase.

[41] Other studies have demonstrated that positive

changes in the SAM may occur in response to greenhouse

gas increases [e.g., Fyfe et al., 1999; Kushner et al., 2001;

Stone et al., 2001; Cai et al., 2003; Rauthe et al., 2004].

Hartmann et al. [2000] hypothesized that synergistic inter-

actions between these anthropogenic forcing factors are

responsible for the changing SAM, while Marshall et al.

[2004] suggested that natural forcings, such as changes in

shortwave radiation, may also have played a role. A number

of studies [e.g., Fogt and Bromwich, 2006; Mo, 2000; Zhou

and Yu, 2004; L’Heureux and Thompson, 2006] also support

the role that natural forcings play in the variability of the

SAM, as they have shown a linear relationship of the SAM

with tropical Pacific sea surface temperatures (SSTs). How-

ever, these SST changes could be a result of the greenhouse

gas increases and may not be an independent forcing

mechanism on the SAM variability. Similarly, cooling of

the stratosphere, which would lead to increases in the SAM,

could be caused by both ozone depletion in the stratosphere

and increases in greenhouse gases in the troposphere, and

thus these mechanisms are likely all related [Arblaster and

Meehl, 2006; Cai and Cowan, 2007].

[42] ENSO is the farthest reaching climatic cycle on

Earth on decadal and subdecadal time scales. Since 1977,

the Southern Oscillation Index (SOI, the atmospheric com-

ponent of ENSO) has shifted toward a more negative phase,

associated with more frequent and stronger El Niño events

(the ocean component of ENSO). It has a profound effect

not only on the weather and oceanic conditions across the

tropical Pacific, where the ENSO has its origins, but also in

the high-latitude areas of the Southern Hemisphere, most

markedly in the South Pacific (see Turner [2004] for a

review). In this region, a large blocking high-pressure center

often forms during El Niño warm events [Renwick and

Revell, 1999; Renwick, 1998; Van Loon and Shea, 1987].

The low-frequency variability of the atmospheric circulation

is readily seen in the amplitude of this pressure center,

which is part of the Pacific South American (PSA) pattern

[Mo and Ghil, 1987]. The PSA represents a series of

alternating positive and negative geopotential height

anomalies extending from the west central equatorial Pacific

through Australia/New Zealand, to the South Pacific near

Antarctica/South America, and then bending northward

toward Africa. It follows a great circle trajectory that is

induced by upper level divergence initiated from tropical

convection [Revell et al., 2001] and is the conduit by which

the ENSO anomalies in the tropics reach the high southern

latitudes through the atmosphere.

[43] The decadal variability of the ENSO signal in high

southern latitudes is well documented. Results from

Bromwich et al. [2000, see also 2004a] indicate a strong

shift in the correlation between West Antarctic precipitation

minus evaporation (P-E) and the SOI using atmospheric

reanalysis and operational analysis over the last 2 decades.

The time series of P-E was positively correlated with the

SOI until about 1990, after which it became strongly

anticorrelated, a relationship that persisted through 2000,

after which the relationship became weak, demonstrating

that forecasting dependence on this association requires

caution. In addition, the positive SOI–summer temperature

correlation in the western Ross Sea (cooler during El Niño

and warmer during La Niña time periods) was only mar-

ginally significant during the 1980s but strongly significant
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Figure 12. Colored contours denote the spatial correlations (shaded by statistical significance) of ERA-
40 mean sea level pressure (MSLP) and the Southern Oscillation Index (SOI) for (a) the 1980s and (b) the
1990s. Also plotted, in red numbers, are the observed MSLP-SOI correlations for selected stations south
of 30�S; at the South Pole station, pressure was used instead of MSLP. Significance levels for the
correlation values are listed beside the key. Adapted from Fogt and Bromwich [2006].
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during the 1990s [Bertler et al., 2004]. Fogt and Bromwich

[2006] similarly noted strong changes in the strength of the

ENSO teleconnection between the 1980s and the 1990s.

Figure 12 displays the annual mean sea level pressure

(May–April) correlation of the European Centre for Medi-

um-Range Weather Forecasts 40-year reanalysis with the

SOI, a pressure-based record used to monitor ENSO vari-

ability. Figure 12a demonstrates a weak teleconnection to

the South Pacific during the 1980s, which amplifies and

shifts southeastward in the 1990s (Figure 12b). Expanding

upon Bertler et al. [2004], Fogt and Bromwich [2006]

demonstrated that the decadal variability of the high-latitude

ENSO teleconnection to the South Pacific is governed by

the phase of the SAM. When both are in the same phase

(i.e., La Niña occurring with positive phases of the SAM

and El Niño occurring with negative phases), the tele-

connection is amplified; it is dramatically weakened in

periods when these two main climate modes are out of

phase (i.e., El Niño occurring with positive phases of the

SAM). When the combined forcing of both climate drivers

is considered, another decadal change is apparent. In a case

study for the McMurdo Region, Bertler et al. [2006]

showed that in the 1980s a combined SOI-SAM summer

index led (+1 year) over regional summer temperatures,

while it lagged (�1 year) during the 1990s, providing

further evidence for a recent change or decadal oscillation

in the Antarctic-tropical teleconnection.

[44] Teleconnections like the link between ENSO and the

Antarctic are usually identified by statistical analyses. Much

work has been done on trying to understand the underlying

mechanisms using diagnostics from climate models. How-

ever, some models do not have a good representation of

ENSO, which creates problems, and ocean models still lag

atmospheric models in their development, so the reliance on

statistics reflects the current state of research.

[45] The 21-nation consortium of the International Trans-

Antarctic Scientific Expedition (ITASE) has pioneered

calibration tools and reconstruction of climate indices and

evidence for climate forcing using single sites through to

multiple arrays of sites based on shallow ice cores covering

the past 200–1000 years [Mayewski et al., 2004b]. These

shallow ice core records provide annually resolved accu-

mulation rate and d18O temperature proxies used as ground

truth for precipitation and temperature reanalysis products

[e.g., Genthon et al., 2005; Schneider et al., 2005]. ITASE

ice core chemistry data calibrated against modern instru-

mental climate data also provide climate proxies for global-

scale atmospheric circulation features, for example, ENSO,

by using MSA [Meyerson et al., 2002; Bertler et al., 2004]

and for major regional atmospheric circulation features such

as the Amundsen Sea Low, plus high-pressure ridging over

East Antarctica, and the SAM, using Na+, NO3
�, and Ca++,

respectively [Kreutz et al., 2000; Souney et al., 2002;

Goodwin et al., 2004; Proposito et al., 2002; Shulmeister

et al., 2004; Kaspari et al., 2005; Yan et al., 2005] (also see

discussions in section 1 in relation to Figures 7 and 9). Ice

core proxy reconstructions for the Amundsen Sea Low and

the southern circumpolar westerlies indicate that these

circulation features are still within the range of variability

established over the last 1200 years [Mayewski and Maasch,

2006], despite recent impact by human-induced changes in

stratospheric ozone on the strength of the circumpolar

westerlies around the edge of the polar vortex [Thompson

and Solomon, 2002]. But it is also true to say that even

though the wind strengths are the same as they have been

over the past 1200 years, the temperatures are different; thus

in the past few decades the overall system has moved outside

the range of variability established over the past 1200 years.

Ice core climate proxies offer the opportunity for signifi-

cantly more reanalysis testing and climate modeling.

[46] Evidence for inland penetration of summertime ma-

rine tropospheric air masses over the last few decades,

relative to the last few hundred years, was detected using

ice core marine sourced SO4
= inputs noted in portions of

coastal West Antarctica near the Amundsen Sea [Dixon et

al., 2005]. Future insights into the timing and location of

this and other marine air mass penetrations may prove

useful in determining the cause for changes in sea ice extent

and assessing the impact of greenhouse gas warming over

the Southern Ocean.

[47] The impact of solar forcing (via UV induced changes

in stratospheric ozone concentration) on the southern cir-

cumpolar westerlies at the edge of the polar vortex has been

suggested through an association established between ice

core climate proxies for the westerlies and for solar vari-

ability [Mayewski et al., 2005]. This work reveals decadal-

scale associations between the circumpolar westerlies, in-

ferred from West Antarctic ice core Ca++, and 10Be, a proxy

for solar variability in a South Pole ice core [Raisbeck et al.,

1990] over the last 600 years, and with annual-scale

associations with solar variability inferred from the solar

cycle since A.D. 1720. Increased solar irradiance is associ-

ated with increased zonal wind strength near the edge of the

Antarctic polar vortex, and the winds decrease with de-

creasing irradiance. The association is particularly strong in

the Indian and Pacific oceans and may contribute to

understanding the role of natural climate forcing on drought

in Australia and other Southern Hemisphere climate events.

2.3. Changes in Atmospheric Chemistry Over
Antarctica

[48] Antarctic air, snow, and ice samples also provide

information on changes in the chemistry of the atmosphere

over time scales from storm events to hundreds of thousands

of years and representing chemical variation from local to

global scales.

[49] The Antarctic is particularly well known for green-

house gas records of CO2, CH4, and N2O not only from ice

cores but also from in situ observations made since the onset

of modern monitoring during the International Geophysical

Year (IGY) of 1957–1958. Antarctic greenhouse gas mon-

itoring has been essential in identifying the dramatic an-

thropogenic source increases in CO2, CH4, and N2O, now

close to 380, 1755, and 320 ppbv, respectively.

[50] Continent-wide Southern Hemisphere springtime de-

pletion in another greenhouse gas, stratospheric ozone (O3,),
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was identified in the mid-1980s by continuation of a

monitoring program initiated during IGY. Depletion is

currently close to 60%. It is attributed to halogen-catalyzed

chemical destruction, largely attributable to emissions of

chlorofluorocarbons (CFCs) that provide a source for the

halogen chlorine. Chlorine (along with bromine from in-

dustrial sources) accumulates throughout the winter in polar

stratospheric clouds where upon contact with solar ultravi-

olet light during the Antarctic sunrise it acts to destroy O3.

Bromine has a similar effect. Although the total combined

abundance of ozone-depleting substances continues to de-

cline [World Meteorological Organization (WMO), 2006],

2006 saw the largest Antarctic ozone hole yet. On 24

September 2006 it covered 29 million km2, and on 8 October

2006 it reached the lowest yet measured ozone values of 85

Dobson units (http://ozonewatch.gsfc.nasa.gov/). It is not

yet clear if this is part of a trend, but during 2002–2005,

global mean total column ozone concentrations were 3.5%

below the 1964–1980 average. There is significant year-to-

year variability, which is poorly understood. For example, in

the 2002 Southern Hemisphere spring, a sudden stratospheric

warming caused a significant reduction in the size of the

Antarctic ozone hole and led to higher ozone concentrations

than usual [WMO, 2006]. Observations of O3 destroying

compounds demonstrate the complications associated with

predicting future O3 depletion. Between 2000 and 2004,

tropospheric methyl chloroform and methyl bromide de-

creased by �60 and �45 ppt (8–9%), respectively. Since

2000, tropospheric emissions of chlorofluorocarbons (CFC-

11, CFC-12, and CFC-113) decreased by 1.9 ppt/a (0.8%),

5 ppt/a (1%), and 0.8 ppt/a (1%), respectively. In contrast,

hydrochlorofluorocarbons (HCFCs), in particular, HCFC-22,

increased by 4.9 ppt/a (3.2%) [WMO, 2006].

[51] The reconstruction of changes in Pb pollution during

past centuries has been achieved by analyzing snow samples

collected in Coats Land, Victoria Land, and Law Dome

[Van de Velde et al., 2005] and from deep ice cores such as

Vostok [Hong et al., 2003]. These records show that Pb

pollution over Antarctica started as early as the 1880s.

Further, atmospheric Pb concentrations have increased two-

fold to threefold over Antarctica compared to average

Holocene levels [Boutron and Patterson, 1983]. Isotopic

data suggest that large anthropogenic Pb inputs to Antarc-

tica from the 1970s to 1980s are linked to the rise and fall in

the use of leaded gasoline, as already clearly observed in the

Arctic [Boutron et al., 1991; Rosman et al., 1993]. A clear

decrease in Pb levels is observed during recent years in

parallel with the phasing out of Pb additives in gasoline.

Antarctica also shows slight contamination with other trace

metals such as Cr, Cu, Zn, Ag, Pb, Bi, and U as a

consequence of long-distance transport from surrounding

continents [Wolff and Suttie, 1994; Wolff et al., 1999;

Planchon et al., 2002; Vallelonga et al., 2002; Van de Velde

et al., 2005]. In general, increases in anthropogenic source

pollutants, including trace elements, can be attributed to a

combination of the following: Antarctic logistic activities

[Boutron and Wolff, 1989; Qin et al., 1999], industrial

activities in the Southern Hemisphere, and possibly also

industrial activity in the Northern Hemisphere.

[52] Persistent organic pollutants (POPs), pesticides, and

industrial chemicals are found worldwide because of their

propensity for long-range atmospheric transport. The distri-

bution pattern and levels of POPs such as polychlorobi-

phenyls and chlorinated pesticides such as DDT and

hexachloribenzene are reported in the Antarctic environ-

ment [Fuoco et al., 1996; Corsolini et al., 2002; Weber and

Goerke, 2003; Montone et al., 2003]. Anthropogenic source

radionuclides stemming from aboveground nuclear bomb

testing are also present throughout Antarctica, as is evidence

of the Chernobyl nuclear accident in at least the region of

the South Pole [Dibb et al., 1990].

[53] Maps of the surface distribution of soluble chemical

species from Bertler et al. [2005] indicate the potential

scope for exploring chemical and climate variability (for

examples, see maps of sodium and sulphate concentration in

Figure 2b). As expected, the East Antarctic interior shows

significantly lower values of marine source Na+ (�2 to

�30 ppb) than coastal sites (�75 to�15,000 ppb). The change

from very low to very high concentrations occurs close to

the coast. This might be caused by the dominant influence

of either cyclones (Na+ rich) or katabatic winds (Na+

depleted). The Antarctic Peninsula shows high values

overall. Marine source Cl� variability exhibits a similar

pattern to Na+, ranging from �1 to �28,000 ppb, with

highest values at coastal sites (�150 to �28,000 ppb) and

lower values in the interior (1 to �150 ppb). The Antarctic

Peninsula shows overall high values and no significant

trend with elevation. The spatial variability of multisource

(biomass, lightning, marine, and human activity) NO3
�

ranges from �4 to �800 ppb. Highest values are observed

in Enderby Land, Dronning Maud Land, and Victoria Land,

ranging from �30 to 800 ppb. Intermediate values are

reported from Marie Byrd Land, Ronne Ice Shelf, South

Pole region, and Northern Victoria Land (�35 to�100 ppb),

while lowest values are observed in the Antarctic Peninsula

and Kaiser Wilhelm II Land (�0 to �20 ppb). While NO3
�

has been shown to be affected by postdepositional loss in

low-accumulation sites [Legrand and Mayewski, 1997],

the lowest values for NO3
� are observed at sites with

relatively high annual accumulation: the Antarctic Peninsula

and Kaiser Wilhelm II Land. The spatial variability of

multisource (marine, evaporite, volcanic, and human

activity) SO4
= ranges from 0.1 to �4000 ppb. SO4

= is

particularly prone to sporadic high input through volcanic

events. The Antarctic Peninsula is characterized by low

values (�10 to 30 ppb), with higher values only at coastal

sites (�75 to 1000 ppb). Values from Kaiser Wilhelm II

Land are also relatively low (15 to 70 ppb). The spatial

variability of marine phytoplankton sourced MSA ranges

from 3 to �160 ppb. With the exception of some coastal

sites, the highest concentrations are at coastal sites, decreas-

ing inland. Terrestrial and marine source Ca++, Mg++, and

K+ concentrations range from 0.1 to 740 ppb, from 0.2 to

�2000 ppb, and from 0.1 to 600 ppb, respectively. All three

species show low concentrations across Antarctica, with a
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few exceptions where local dust sources, such as the

McMurdo Dry Valleys, or a strong marine influence, as at

Terra Nova or at coastal sites at the Antarctic Peninsula,

cause orders of magnitude higher concentrations.

2.4. Changes in Ocean Temperature and Salinity

[54] The Southern Ocean is one of the most poorly

sampled areas on the planet, and investigations into the

magnitude and causes of variability and change here are

hampered by a scarcity of data from earlier eras. Little or no

data exist from large areas of the Southern Ocean prior to

the 1950s, and this problem persisted up to the advent of the

satellite era in the 1970s and 1980s. Even today, with

routine data collection from the ocean surface by satellite,

obtaining information on subsurface changes over wide

areas remains a huge logistical challenge, especially under

the winter sea ice. Programs such as Argo (which has an

emerging sub-sea-ice component) and Southern Elephant

Seals as Oceanographic Samplers (the use of marine mam-

mals for operational oceanography) are seeking to address

this data void, but these are comparatively recent innova-

tions, and it will be some years before sufficient data are

accumulated to robustly reveal changes in many sectors.

This lack of data severely compromises our understanding

of and ability to model numerically the role of the Southern

Ocean in the global climate system.

[55] These facts notwithstanding, there are indications

that some very important, large-scale changes have occurred

in the Southern Ocean. These most significant of the

changes reported thus far are (1) a strong warming in the

waters of the ACC; (2) a warming of the Antarctic Bottom

Water (AABW) exported to the South Atlantic; (3) a

freshening of the waters in the Indian and Pacific sectors

of the Southern Ocean, including the AABW formed here;

and (4) a remarkably strong warming of the upper layers of

the ocean adjacent to the western Antarctic Peninsula. We

here summarize each of these in turn.

2.4.1. Warming of the Circumpolar Southern Ocean
[56] Temperature records from autonomous floats drifting

between 700 and 1100 m during the 1990s were collated

and examined by Gille [2002, 2003], who made compar-

isons of these data with earlier temperature records collected

during earlier decades (1950s onward) from ship-based

instruments. A large-scale significant warming of the

ACC was apparent in this depth range, of around 0.2�C
(Figure 13). This was recently expanded on by Gille [2008],

where the vertical structure of the warming was investigated,

and it was found that the warming signal was vertically

coherent and greatest near the surface. This pattern of

warming is in accord with other studies that used large-

scale compilations of in situ data, such as those of Levitus et

al. [2000, 2005] (Figure 14), though notably of a larger

magnitude.

[57] Gille [2008] argued that some of the warming

observed could be attributable to a southward shift of the

ACC current cores, essentially reflecting a redistribution of

heat rather than an increase. This is in line with previous

regional interpretations of change [e.g., Aoki et al., 2003]

and some modeling studies [e.g., Fyfe et al., 2007], though

other interpretations are possible, and this remains an active

area of research. For example, the role of increasing air-sea

heat fluxes has also been indicated in some works [e.g., Fyfe

et al., 2007], and it has also been shown that the known

strengthening of the circumpolar westerly winds could lead

to increased eddy activity in the Southern Ocean and a

consequent increase in the poleward eddy heat flux [Mer-

edith and Hogg, 2006; Hogg et al., 2008].

Figure 13. Temperature trends computed from float/
hydrography differences bin averaged in 1� � 1� squares.
For this analysis, float/hydrography pairs were used if the
hydrographic measurements were collected after 1930, and
they were separated from the float observations by at least
10 years in time and by less than 220 km in space. Latitude
and longitude grid lines are at 10� intervals. From Gille
[2002]. Reprinted with permission from AAAS.

Figure 14. Zonal trend in ocean heat content during the
second half of the twentieth century [from Levitus et al.,
2005]. Note in particular the strong warming in the region
of the Antarctic Circumpolar Current. (Contour interval is
2 � 1018 J/a.)

RG1003 Mayewski et al.: ANTARCTIC AND SOUTHERN OCEAN CLIMATE

20 of 38

RG1003



[58] Levitus et al. [2005] suggested that the observed

warming in the Southern Ocean was probably due to a

combination of natural variability and anthropogenic forc-

ing. Fyfe [2006] investigated this via coupled modeling and

found that the current generation of climate models can

produce a warming in the Southern Ocean comparable to

that observed if anthropogenic gases and sulphate and

volcanic aerosols are included. While the important role

of the Southern Ocean eddy field is not well represented in

these models, this study nonetheless lends weight to the

argument that human activities have influenced Southern

Ocean temperatures. This study also demonstrated that if the

role of volcanic aerosols is neglected in climate modeling

simulations, the simulated warming is nearly double, sug-

gesting that the human impact on Southern Ocean warming

is only partially realized at present because of the cooling

effect of the aerosols.

[59] The circumpolar warming of the waters in the ACC

is possibly impacting waters farther south in the subpolar

gyres also. For example, Robertson et al. [2002] noted a

warming of 0.3�C for the Warm Deep Water (WDW) layer

of the Weddell Gyre. This is the comparatively warm, saline

water mass that enters the subpolar gyre from the ACC.

This change occurred over the period 1970s to 2000, and it

has been argued that anomalous intrusions of water from the

ACC contributed to this warming [Fahrbach et al., 2004],

with a recovery from the Weddell Polynya of the mid-1970s

also possibly implicated [McPhee, 2003]. (More recently, a

cooling of WDW across the Weddell Gyre was reported

[Fahrbach et al., 2004], though whether this is a genuine

reversal of the decadal warming trend or simply a brief

interruption remains unclear.)

2.4.2. Warming of the AABW Exported to the South
Atlantic
[60] Intense air-sea-ice interactions in the Weddell Sea

lead to the formation of the dense, cold Weddell Sea Deep

Water (WSDW) and the even denser Weddell Sea Bottom

Water (WSBW). Unlike WSBW, which is topographically

constrained to circulate within the Weddell Gyre, WSDW is

readily exported northward, whereupon it constitutes the

densest layer of the AABW in the Atlantic.

[61] Various studies have demonstrated a decadal-scale

warming the AABW of the South Atlantic. In the Argentine

Basin, an investigation of hydrographic data collected

during the 1980s showed that the coldest abyssal layer

warmed significantly in that interval [Coles et al., 1996].

Johnson and Doney [2006] demonstrated that this warming

continued thereafter, up to at least 2005. Other studies have

demonstrated AABW warming even farther north in the

Atlantic, including at Vema Channel, the Brazil Basin to the

north, and even as far as the equator [Andrié et al., 2003;

Johnson and Doney, 2006; Zenk and Morozov, 2007].

Meredith et al. [2008] demonstrated that these lower-lati-

tude changes in AABW were due to changes in the

properties of the WSDW being exported northward from

the Weddell Sea.

[62] The cause of the WSDW warming in the Weddell

Sea has not been determined unambiguously. Indeed, be-

cause of a sparsity of long-term measurements from the

boundary currents of this region, the WSDW warming

signal has not yet been conclusively demonstrated here.

However, a warming signal in the WSBW has been shown

[Fahrbach et al., 2004], and the processes that lead to

formation of these water masses are notably similar. Further

work is needed to monitor the evolving WSDW properties

directly in the Weddell Sea and understand better the causes

of the warming signal exported to lower latitudes.

2.4.3. Freshening of Waters in the Indian and Pacific
Sectors
[63] In addition to changes in temperature, changes in

ocean salinity are of particular importance in the Southern

Ocean. This is a consequence of the equation of state for

seawater: at low temperatures, density is dominated by

salinity; hence stratification, mixed layer depth, and geo-

strophic flows all depend very strongly on the changing

freshwater budget. Furthermore, the large adjoining sea ice

and glacial ice fields mean that very significant changes to

the freshwater inputs are possible. That large changes are

happening is clearly illustrated by Boyer et al. [2005], who

used a compilation of ocean salinity measurements from

various sources and noted large decreases south of 70�S
(Figure 15).

[64] The causes and regional dependence of this freshen-

ing have been elucidated in other works. In the Ross Sea, a

remarkable freshening was first detailed by Jacobs et al.

[2002], who proposed a link with melting of glacial ice,

based on oxygen isotope measurements. Jacobs [2006]

demonstrated that the ‘‘upstream’’ region of the Amundsen

shelf and upper slope showed a freshening between 1994

and 2000; this is the region in which Shepherd et al. [2004]

postulated that a warming ocean is eroding the West

Antarctic ice sheet, possibly explaining the anomalous

freshwater injection. Other notable freshenings include the

region between 140�E and 150�E on the George V conti-

nental shelf and rise [Jacobs, 2004] and at depth in the

Figure 15. Zonal mean trend in ocean salinity (in units of
10�4/a) during the second half of the twentieth century
[from Boyer et al., 2005]. Blue areas denote freshening;
pink areas denote salinification. Note in particular the very
strong freshening south of the region of the Antarctic
Circumpolar Current.
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Australian-Antarctic Basin [Whitworth, 2002]. Recently,

Aoki et al. [2005] observed significant changes in the Adelie

Land Bottom Water between the mid-1990s and 2002–

2003, based on repeat summer hydrographic observations

along 140�E. The putative explanation given was a con-

tinuing freshening of source waters supplying bottom water

to the Australian-Antarctic Basin. This was expanded upon

by Rintoul [2007], who observed a freshening in the AABW

from both the Indian and Pacific Ocean sector sources. The

cause of the decline in shelf water salinity is not yet clear,

although an increase in glacial ice melt, increased precipi-

tation, and reduced sea ice production have been identified

as possible contributors [Gordon, 1998; Jacobs, 2004;

Rintoul, 2007].

2.4.4. Rapid Ocean Warming at the Western
Antarctic Peninsula
[65] Atmospherically, the region in the Southern Hemi-

sphere that has been changing most rapidly in recent

decades is that to the west of the Antarctic Peninsula

[e.g., Turner et al., 2005a]. While the role of the ocean in

this warming has been widely speculated upon, it has been

difficult to investigate this role in practice because of the

strong seasonal bias of data collection from the ocean (the

data are almost entirely collected during the austral sum-

mer). In essence, waters within the influence of the upper

ocean mixed layer show shorter-period variability than

those beneath, meaning that higher-frequency sampling is

needed. Recently, Meredith and King [2005] used a large

compilation of in situ hydrographic profiles collected be-

tween the 1950s and 1990s to tackle this issue. They

found an extremely strong surface-intensified warming (of

greater than 1�C) based on austral summer measurements

(Figure 16) and a coincident strong summertime salinifica-

tion. They argued that these were both caused by the

reduction in sea ice production in this sector since the 1950s,

with the salinification being due to the strong seasonal bias in

sampling (wintertimemeasurements, if available, would likely

have shown a freshening). It was noted that the trends observed

were positive feedbacks, acting to sustain and enhance the

atmospheric warming and induce further reductions in sea ice

formation. The profound consequences for the ocean ecosys-

tem in this sector were also noted [cf. Atkinson et al., 2004;

Peck et al., 2004].

2.5. Changes in Southern Ocean Circulation

[66] Notwithstanding the magnitude of the challenge in

observing and explaining the changes in ocean properties,

the aspect of Southern Ocean change that has remained

most elusive to date is the variability and change in the

circulation. This is a serious problem, as Southern Ocean

circulation change is thought to have played a pivotal role in

driving past global climatic transitions [Watson and Naveira

Garabato, 2006; Toggweiler et al., 2006] and stands out as a

key element of the oceanic response to recent and projected

atmospheric trends in model simulations of climate change

[Saenko et al., 2005; Hallberg and Gnanadesikan, 2006]. In

both past and future global climate evolution, variations in

the strength and character of the Southern Ocean’s merid-

ional overturning circulation take a central stage. These are

driven by changes in the intensity of wind and buoyancy

forcing and constitute an important teleconnection between

the regional atmosphere and cryosphere and the global deep

ocean.

[67] The response of the ocean circulation to the increas-

ing circumpolar westerly winds caused by the increasing

SAM has received significant recent attention [e.g., Hall

and Visbeck, 2002; Oke and England, 2004]. For example,

it has been argued that the increasing SAM may have led to

a latitudinal shift and increase in transport of the ACC [Fyfe

and Saenko, 2006], with potential consequences for water

mass properties in the Southern Ocean. While there is good

observational evidence that the ACC transport depends

strongly on the SAM on time scales from days and weeks

Figure 16. Trends in ocean summer temperature during 1955–1998, for four different depth levels
(surface, 20 m, 50 m, and 100 m). Grid cells with no data are left white. Note the significant warming
trend observed close to the western Antarctic Peninsula: this is strongly surface intensified, decaying
virtually to zero at 100 m depth. From Meredith and King [2005, Figure 2].
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[Aoki, 2002; Hughes et al., 2003] to years [Meredith et al.,

2004], it has also been argued that the trend in winds is

more likely to result in a trend in circumpolar eddy activity

rather than one in ACC transport [Meredith and Hogg,

2006]. This is currently the subject of significant ongoing

research effort.

[68] In present views of the three-dimensional ocean

circulation, the rate of upwelling of Circumpolar Deep

Water in the Southern Ocean is enhanced in persistent high

SAM index states and reduced in low ones [e.g., Toggweiler

et al., 2006; Hallberg and Gnanadesikan, 2006]. There is

some modeling evidence for this correspondence carrying

over to the rate of formation and northward export of

Subantarctic Mode Water at the northern edge of the ACC

and Antarctic Intermediate Water at the Polar Front [Rintoul

and England, 2002; Oke and England, 2004; Hallberg and

Gnanadesikan, 2006]. Furthermore, it has been suggested

that SAM-related changes in the wind stress curl north and

south of the ACC drive variability in the strength of the

Southern Hemisphere subtropical gyre [Cai et al., 2005] and

the subpolar gyre [Fahrbach et al., 2004]. In the Weddell

gyre, these changes may lead to the episodic formation of

large open ocean polynyas and associated onset of deep

convection, a mode of Southern Ocean ventilation that is

rare in the modern ocean but that may have been prevalent

in colder global climatic states [Gordon et al., 2007].

Variability in the strength of the Weddell gyre has also

been put forward as a driver of complex changes in the

export of Antarctic Bottom Water [Meredith et al., 2001].

Without more data, the extent to which any of these

circulation changes are occurring remains unclear, as does

their relationship to the observed decadal-scale variability in

ocean properties.

2.6. Changes in Sea Ice

[69] Sediment and ice-rafted debris from deep sea cores

are interpreted to suggest that during the last glacial max-

imum a sea ice cover persisted for 6–7 months of the year

as far north as 56.4�S at longitude 145.3�E [Armand and

Leventer, 2003]. This is 6.3� farther north than the mean

contemporary maximum ice edge location determined from

satellite data at the same longitude [Worby and Comiso,

2004]. The maximum northerly ice extent at this location

during the satellite era (since 1972) was 59.8�S.
[70] Since the days of the earliest explorers, vessels have

kept written logs of their encounters with sea ice around

Antarctica. However, these logs are sparse and usually only

reported the location of the ice edge. Cook, the first to

circumnavigate Antarctica in 1777, frequently reported the

presence of sea ice as he tried to push south toward the

continent, as did Bellingshausen during his exploration in

1831. The data from these log books provided the first in

situ observations of Antarctic sea ice used for climate

research, when Parkinson [1990] compared them with the

location of the 1973–1976 ice edge derived from satellite

data. Some significant differences between the data sets

were observed, but Parkinson found no compelling evi-

dence for the present-day ice edge being much different to

that of 200 years ago.

[71] From the 1920s to 1930s, the UK Discovery Com-

mittee undertook a series of cruises to the Southern Ocean

using the shipsDiscovery, Discovery II, andWilliam Scoresby.

The purpose was to investigate oceanographic properties

and plankton distribution in relation to whale conservation,

with the results published by the UK government in a long

series of Discovery Reports. During this period, direct

observations of sea ice extent were made when the ship

encountered the pack ice, and from these occasional obser-

vations, Mackintosh and Herdman [1940] compiled a

circumpolar map of the monthly variation of the average

position of the ice edge. Mackintosh [1972] later updated

these analyses with additional observations. Using whale

catch data as a proxy, rather than direct observations of the

ice edge location, de la Mare [1997] reported that there had

been a 25% decline in summer (January) Antarctic sea ice

between the mid-1950s and early 1970s. This result is in

agreement with an analysis of MSA concentration in a

coastal ice core from Law Dome, Antarctica [Curran et

al., 2003], which shows a strong correlation with ice extent

in the region 80–140�E. The explanation for this relation-

ship relies on the fact that MSA is produced from dimethyl

sulphide, which, in turn, is produced from sea ice algae. The

hypothesis is that in years of greater sea ice extent there will

be more sea ice algae and therefore a greater concentration

of MSA in precipitation along the coast of Antarctica.

However, the strong correlation reported off East Antarctica

has not been replicated in other cores, predominantly

around the Antarctic Peninsula region, and further inves-

tigations are underway.

[72] Worby and Comiso [2004] also showed that modern

ship-based observations of ice edge position are well

correlated with satellite-based data for the ice growth

(March–October) period but subject to a consistent offset

of between 1 and 2� of latitude during the summer months.

This is due to the fact that satellite passive microwave

instruments are not able to detect the diffuse, saturated ice

edge conditions typical in summer. Ackley et al. [2003] also

showed that when the offset (between satellite estimates and

ship estimates of edge location) is applied, there is good

agreement between the range of modern (1979 onward)

satellite-based ice edge positions and the ship-based ice

edges observed in the 1920s and 1930s for circumpolar

mean latitude extent; for example, the 25% decline reported

by de la Mare [1997] was not confirmed.

[73] Evidence of a regional decrease in ice extent is

apparent in the Weddell Sea/Antarctic Peninsula area.

Thompson and Solomon [2002] attribute some of this

change to an air temperature-driven ice retreat effect, all

within the period 1969–1998, caused by a shift in the SAM,

albeit primarily a change in summer, verified by instrumen-

tal temperature records and the changes in ice shelves in that

region. In the modern era, continued decreases in this region

are balanced by an increase in extent elsewhere, primarily in

the Ross Sea [Gloersen et al., 1992], leading to little

observed change in the modern era for circumpolar mean
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extent. While Zwally et al. [2002a, 2002b] suggest no

statistically significant change in sea ice extent over recent

decades, Parkinson [2004] shows a trend in the reduction of

the length of ice season for the Antarctic Peninsula region of

between 1 and 6 days for the period 1979–2002. This is

consistent with the observed temperature increases reported

in this region [e.g., Vaughan et al., 2003]. The same study

shows an increase in the length of the ice season around

much of the rest of Antarctica, with the exception of some

regions of the outer pack ice zone around East Antarctica.

Turner et al. [2003] note exceptional changes in sea ice in

the Bellingshausen Sea.

[74] In terms of sea ice thickness, there is still no single

measurement technique that provides global, daily cover-

age, in the same way that passive microwave data provide

ice concentration and extent. Consequently, our knowledge

of Antarctic sea ice thickness is limited to a compilation of

point measurements using a range of techniques from in situ

sampling and ship-based observations, to data from upward

looking sonars, and to electromagnetic soundings from

aircraft-based and ship-based instruments. The SCAR Ant-

arctic Sea Ice Processes and Climate project has been

instrumental in compiling the available field data from ships

operating in the Antarctic sea ice zone since 1980, and has

released a compilation, from 89 voyages, of data that show

regional and seasonal variability in the thickness distribu-

tion of the Antarctic sea ice zone. However, monitoring of

Antarctic sea ice thickness is currently not possible, and

important changes in the thickness of Antarctic sea ice may

currently be going unnoticed. Ice core researchers are in the

process of developing proxies for sea ice, a critical compo-

nent in the climate system, through studies of sulfur com-

pounds such as SO4
= and MSA [Welch et al., 1993; Curran et

al., 2003; Dixon et al., 2005]. ENSO–sea ice connections are

investigated over the last �500 years utilizing South Pole ice

core MSA concentrations as a proxy revealing that in general,

increased sea ice extent is associated with a higher frequency

of El Niño events, while decreased sea ice corresponds to

lower El Niño frequency [Meyerson et al., 2002].

2.7. Mass Balance Changes in the Antarctic Ice Sheet,
Antarctic Peninsula, Sub-Antarctic Islands, Southern
South America, and New Zealand

[75] The mass balance, or mass budget, of a glacier or ice

sheet is defined as the difference between (1) mass input (by

net snow/ice accumulation at the surface caused by precip-

itation, drifting snow, and solid deposition from water

vapor, or by subsurface accumulation caused by super-

imposed ice, where the base of the ice goes from wet to

frozen, or by basal accretion in the case of ice shelves) and

(2) mass loss (by basal melting, surface sublimation and

melting, and ice calving). Balance estimates can be prepared

in a number of different ways and with varying levels of

complexity and confidence. For small glaciers, field mea-

surement of net annual balance at surface stakes is a

straightforward and reliable method [Paterson, 1994]. How-

ever, for larger glaciers, including ice sheets and ice shelves,

widely distributed field measurements are often logistically

impractical, and satellite remote sensing methods assume a

greater importance [ISMASS Committee, 2004].

[76] There are, broadly, three different approaches to

obtaining ice sheet mass balance estimates, a topic exten-

sively reviewed by Eisen et al. [2008]. Mass flux methods

are appropriate for catchment-scale studies [e.g., Whillans

and Bindschadler, 1988]. The method entails computing the

difference between accumulation rate in a catchment and the

depth-averaged ice flux through a gate, often defined as the

grounding line. Catchment accumulation rates are usually

based on interpolation between isolated firn core measure-

ments, best accomplished using ground-penetrating radar

profiling [Richardson and Holmlund, 1999; Frezzotti et al.,

2004; Spikes et al., 2004], or satellite microwave radiometry

[Vaughan et al., 1999; Giovinetto and Zwally, 2000; Arthern

et al., 2006], or regional atmospheric climate models [Van

den Broeke et al., 2006; Van de Berg et al., 2006]. Outgoing

flux is obtained from the product of ice velocity and ice

thickness. Satellite remote sensing methods such as feature

tracking [Scambos et al., 1992] and radar interferometry

[Goldstein et al., 1993; Bamber et al., 2000] provide the

most efficient means of mapping surface velocity fields.

Flux calculations are useful but subject to large uncertainties

in the interpolation of accumulation rates and in the param-

eterization of depth-averaged velocity. A variant of the flux

method is the submergence velocity technique [Hamilton et

al., 2005], in which point measurements of accumulation

rate from cores and vertical velocity from GPS surveys are

compared to yield the rate of thickness change. While the

results of this method are precise, its shortcoming is that the

results apply only to the locations where the measurements

are made.

[77] Geodetic methods of assessing mass balance are

increasingly used. One such technique entails repeat meas-

urements of surface elevations by airborne altimeters [e.g.,

Spikes et al., 2003] and spaceborne altimeters [e.g., Zwally

et al., 2005]. Radar altimeters on board Seasat, Geosat,

ERS-1, and ERS-2 have been measuring ice sheet surface

elevations since 1978. The relatively long record of radar

altimeter observations allows interannual variability in sur-

face elevations to be identified and, to some extent,

removed from resulting mass balance estimates [Li and

Davis, 2006; Wingham et al., 2006]. In recent years, similar

measurements have been made by a laser altimeter on board

ICESat [Zwally et al., 2002a]. Laser altimetry has the

advantage of surveying smaller spatial footprints (�60 m

or less) than radar altimetry (�20 km). Altimetric methods,

regardless of instrument, yield volume changes with time.

The conversion of these estimates to rates of mass change is

complicated by poorly quantified processes, such as crustal

isostatic adjustment and the variable rate of firn compaction,

and, in the case of radar sensors, uncertainty in the depth

from which the radar signal is being returned. The role of

firn compaction has been analyzed by means of a physically

based model [Li et al., 2007] and also by means of regional

atmospheric climate models [Van den Broeke et al., 2006].

Spaceborne gravimetry is a relatively new technique that

uses tandem satellites to measure spatial and temporal

RG1003 Mayewski et al.: ANTARCTIC AND SOUTHERN OCEAN CLIMATE

24 of 38

RG1003



variations in the Earth’s gravity field. These changes can be

inverted to an ice mass change, on the assumption that the

gravity change is the result of a change in mass on the

Earth’s surface. Several mass balance estimates have been

derived using this technique [e.g., Chen et al., 2006;

Ramillien et al., 2006; Velicogna and Wahr, 2006], but

the results are sensitive to processing strategies and the

treatment of sources of error.

[78] For the grounded interior ice sheet of Antarctica,

losses by surface melting, sublimation, and basal melting are

negligible, as are mass inputs by superimposed ice and

deposition from water vapor. However, this is not the case

for the Antarctic Peninsula and Southern Ocean glaciers,

where all components can potentially contribute to the mass

balance. The following is a brief summary of the most recent

mass balance calculations for Antarctic and Southern Ocean

glaciers.

2.7.1. Recent Mass Balance for the Antarctic Ice
Sheet
[79] Taking a conservative approach, it appears that there

is still no consensus as to the value of Antarctica’s mass

balance or even its sign (Table 1). However, recent results of

Rignot et al. [2008] show a near-zero mass balance for East

Antarctica of �4 ± 61 Gt/a, which suggests that negative

mass balances in coastal areas are larger than any mass

increase in the interior. The lack of consensus is largely a

function of the differing methods of mass balance assess-

ment described in section 2.7. While the continent’s mass

balance as a whole remains uncertain, some progress has

been made in estimating the mass balance for individual

components of the ice sheet. The East Antarctic Ice Sheet

appears to be acting as a net sink for global sea level [Davis

et al., 2005; Zwally et al., 2005; Wingham et al., 2006],

mostly because of ice sheet growth due to a hypothesized

modest increase in snowfall. If this is the case, the increase

in snowfall must be a very recent event and limited to the

time period of the altimeter surveys (1992–2003) because

other studies [e.g.,Van de Berg et al., 2005;Van den Broeke et

al., 2006; Monaghan et al., 2006a, 2006b; Rignot et al.,

2008] do not show any substantial trend in snow accumula-

tion over the last few decades. Only two regions of East

Antarctica (the Totten and Cook glaciers) have significantly

negative mass balance conditions [Rignot, 2006; Shepherd

andWingham, 2007]. These are regions of enhanced ice flow,

and the negative balances might be an ice dynamics response

to the removal of buttressing ice shelves at some point in the

past [Rignot and Thomas, 2002; Zwally et al., 2005].

[80] The smaller West Antarctic ice sheet is generally

understood to be losing mass, primarily as a result of an ice

dynamics perturbation of glaciers draining into the Amund-

sen Sea [Shepherd et al., 2002; Thomas et al., 2004; Holt et

al., 2006; Vaughan et al., 2006]. Recent data show an ice

sheet loss increase of 59% between 1996 and 2006, which

amounts to 132 ± 60 Gt/a in 2006 [Rignot et al., 2008]. The

two largest glaciers in this basin, Pine Island and Thwaites

glaciers, have retreated, accelerated, and thinned since the

1990s [Shepherd et al., 2002]. An inflow of warmer ocean

waters is hypothesized as the trigger for the observed changes

in ice dynamics [Payne et al., 2004], pointing to a delicate

relationship between Antarctic glacier grounding lines and

ocean conditions. The negative balance of the Amundsen Sea

basin is offset to some extent by steady state conditions in the

ice sheet interior [e.g., Hamilton et al., 2005; Zwally et al.,

2005], growth in the Siple Coast catchment [Joughin and

Tulaczyk, 2002] largely due to the shutdown of the Kamb Ice

Stream, and positive mass balance of the ice stream catch-

ments that drain into the Filchner-Ronne ice shelf [Joughin

and Bamber, 2005].

[81] One of the largest sources of uncertainty in the

determination of Antarctic mass balance, and its potential

role in sea level, is the surface mass balance [Vaughan et al.,

1999]. Snowfall is the dominant surface balance term at

regional and larger scales, accounting for about 90% of the

surface mass balance [Bromwich, 1988]. Comprehensive

studies of precipitation characteristics over Antarctica are

given by Bromwich [1988], Turner et al. [1999], Genthon

and Krinner [2001], and Bromwich et al. [2004b].

[82] Because of the paucity of spatially and temporally

coherent snowfall observations, satellites and numerical

atmospheric models are most often used to assess the

variability of the Antarctic surface mass balance at conti-

nental scales. Results from studies employing these techni-

ques indicate that agreement has yet to be reached as to the

long-term distribution of annual surface mass balance over

Antarctica. Current estimates range from +119 to +197 mm/

a [Van de Berg et al., 2005; Ohmura et al., 1996]. Such

discrepancies lead to great uncertainty in estimates of the

contribution of the Antarctic ice sheets to sea level rise [e.g.,

Vaughan, 2005]. For example, Van den Broeke et al. [2006]

show that differences in snowfall accumulation estimates in

the basins where the Pine Island and Thwaites glaciers are

TABLE 1. Summary of Mass Balance Estimates for the Antarctic Ice Sheeta

Mass Balance (Gt a�1) Period Reference Observations Method

+45 ± 7 1992–2003 Davis et al. [2005] �70% of EA and WA; AP not considered satellite radar altimetry
�24 ± 25 1995–2000 Rignot and Thomas [2002] average for EA and WA; AP not considered mass flux method
�30 ± 12 1992–2001 Zwally et al. [2005] �80% of Antarctic coverage, including AP;

rest of the ice sheet interpolated
satellite radar altimetry

+27 ± 29 1992–2003 Wingham et al. [2006] �70% of Antarctic coverage, including the AP satellite radar altimetry
�139 ± 73 2002–2005 Velicogna and Wahr [2006] includes AP GRACE satellite gravity data
�196 ± 92 2006 Rignot et al. [2008] �85% of Antarctica’s coastline, including the AP satellite radar interferometry

and regional climate modeling
aEA, East Antarctica; WA, West Antarctica; AP, Antarctic Peninsula.
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accelerating and thinning [Thomas et al., 2004] cause the

calculations of sea level contributions from these regions to

vary by a factor of two. Clearly, it is imperative to drive

down uncertainty in future work.

[83] Numerical models provide a methodology for assess-

ing the temporal variability of Antarctic surface mass

balance. A series of the latest studies employing global

and regional atmospheric model records to assess changes

in Antarctic surface mass balance indicate that averaged

over the continent, no statistically significant change has

occurred since �1980, although there are regions of both

positive and negative trends [Van de Berg et al., 2005;

Monaghan et al., 2006a; Van den Broeke et al., 2006]. More

recently, a 50-year record of Antarctic snowfall, constructed

by synthesizing atmospheric model output with snow accu-

mulation observations primarily from ITASE ice cores,

showed that there has been no statistically significant

change in snowfall over an even longer period extending

back to the International Geophysical Year of 1957–1958

[Monaghan et al., 2006b]. An additional finding of that

study was that the interannual and interdecadal variability of

Antarctic snow accumulation is so large that it may be

another decade before short-term trends in total ice sheet

mass balance from satellite altimetry and gravity measure-

ments can be distinguished from the noise [e.g., Wingham et

al., 2006].

[84] Synoptic weather patterns control the distribution of

snowfall at larger scales, but at subregional scales, wind-

driven redistribution is often of first-order importance [Gow

and Rowland, 1965; Whillans, 1975; Frezzotti et al., 2002;

Ekaykin et al., 2002]. ITASE research reveals high variabil-

ity in surface mass balance such that single cores, stakes,

and snow pits do not always represent the geographical and

environmental characteristics of a local region [Richardson

and Holmlund, 1999; Frezzotti et al., 2004; Hamilton, 2004;

Spikes et al., 2004]. For example, Frezzotti et al. [2004]

show that spatial surface mass balance variability at sub-

kilometer scales (as is typically represented in ice cores)

overwhelms temporal variability at the century scale for a

low-accumulation site in East Antarctica. Emerging data

collected by ITASE and associated deep ice core projects

(e.g., EPICA) reveal systematic biases in long-term esti-

mates of surface mass balance compared to previous com-

pilations. The biases are presumably related to the small-

scale spatial variability [Oerter et al., 1999; Frezzotti et al.,

2004; Magand et al., 2004; Rotschky et al., 2004]. The

extensive use, along ITASE traverses, of new techniques

like geolocated ground penetrating radar profiling (GPR)

integrated with ice core data provides detailed information

on surface mass balance [Richardson and Holmlund, 1999;

Urbini et al., 2001; Arcone et al., 2004; Rotschky et al.,

2004]. At some sites, stake farm and ice core accumulation

rates differ significantly, but isochronal layers in firn,

detected with GPR, correlate well with ice core chronologies

[Frezzotti et al., 2004]. Several GPR layers within the upper

100m of the surface were surveyed over continuous traverses

of �5000 km and can be used as historical benchmarks to

study past accumulation rates [Spikes et al., 2004].

2.7.2. Recent Mass Balance for the Antarctic
Peninsula
[85] The ice shelves of the Antarctic Peninsula, some of

which are several thousand years old, are not just retreating

but are also undergoing rapid collapse in response to

regional warming [Vaughan et al., 2003]. As an example,

the massive collapse in 2002 of Larsen B ice shelf is

unprecedented during the last 10,000 years [Domack et

al., 2005]. This collapse was preconditioned by structural

weakening related to retreat sometime in the 20 years

preceding the event [Glasser and Scambos, 2008]. Because

they are already floating, the contribution of ice shelves to

sea level rise is negligible. However, the removal of

buttressing ice shelves has resulted in significant flow

acceleration of several inland glaciers [De Angelis and

Skvarca, 2003; Scambos et al., 2004; Rignot et al., 2004],

with the potential to contribute to a rise in sea level. Ice

shelves located farther south along the peninsula may

collapse in the near future if warming continues. This

may be the case for Larsen C, where significant thinning

has already been reported [Shepherd et al., 2003]. Wide-

spread glacier recession is reported for 87% of the Antarctic

Peninsula marine glacier fronts on the basis of analysis of

the behavior of 244 glaciers over the past 61 years [Cook et

al., 2005].

[86] Associated ice thinning has been reported at low

altitudes in glaciers of the Antarctic Peninsula [Morris and

Mulvaney, 1995; Smith et al., 1998]. At higher-elevation

sites there is some evidence for accumulation increase. This

is the case for Dyer Plateau located at an altitude of 2000 m

at 70.7�S, where an accumulation increase of 17% has been

found in the period 1790–1990 on the basis of ice core data

from a depth of 235 m and ice flow modeling [Raymond et

al., 1996]. A doubling in snow accumulation during the

period 1855–2006 has been reported at a 136 m deep ice

core site located at an altitude of 1130 m in the southwestern

Antarctic Peninsula at 73.6�S [Thomas et al., 2008], which

has been linked to a positive shift of the Southern Annular

Mode. Recent satellite interferometry data for more than

300 glaciers on the west coast of the Antarctic Peninsula

show that summer flow velocities increased significantly by

12% from 1992 to 2005 [Pritchard and Vaughan, 2007],

which is explained as a dynamic response to frontal thin-

ning. The thinning and associated flow increase has led to

an accelerated mass loss of 140% in the period 1996–2006,

with a value of 60 ± 46 Gt/a in 2006 according to Rignot et

al. [2008]. The enhanced melting near the coast has resulted

in an increased risk for glacier travel and snow runway

operations [Rivera et al., 2005].

[87] Ice shelves on the western side of the Antarctic

Peninsula, such as the Wordie and Wilkins, have also been

retreating in response to the rise of air temperatures de-

scribed in section 2.1, with signs of incipient collapse

recently reported for Wilkins. In contrast, an increase in

northerly winds in this region has resulted in a rise in the

number of precipitation events, leading to greater snowfall

and therefore greater accumulation [Turner et al., 2005b].
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2.7.3. Recent Mass Balance for New Zealand,
Southern South America, and Southern Ocean Island
Glaciers
[88] Mountain glaciers and ice caps distributed around

the Southern Ocean show a strong wasting during the last

century, with increasing rates during the last few decades

coincident with hemispheric warming.

[89] New Zealand has 3155 glaciers exceeding 0.01 km2

with a total area of 1159 km2 [Chinn, 1989], mostly

concentrated in the Southern Alps and also on Mount

Ruapehu, North Island. Most of these glaciers have been

receding during the past century, together with an overall

rise in the equilibrium line altitudes [Chinn, 1995]. For

example, the Tasman Glacier has been thinning at a rate of

1–2 m/a during the past century [Kirkbride and Warren,

1999]. A few maritime glaciers such as the Franz Josef

Glacier advanced during the period from the early 1980s

until 2000 because of increased local and regional precip-

itation [Chinn et al., 2005], although in the last few years

the trend has reversed, presumably because of decreased

precipitation in combination with enhanced melting in the

ablation areas.

[90] The region in South America located between 40 and

56�S, including Patagonia and Tierra del Fuego, accounts

for �70% of all Andean glaciers, representing more than

20,000 km2 of ice shared between Chile and Argentina. The

main areas in this region are the Northern Patagonian Ice

Field with an area of 3953 km2 [Rivera et al., 2007], the

Southern Patagonian Ice Field (SPI) with an area of 13,362

km2 [De Angelis et al., 2007], and Cordillera Darwin with

an estimated area of 2000 km2 [Casassa, 1995]. These ice

fields consist mainly of temperate ice and contain the largest

glaciers in the Southern Hemisphere outside of Antarctica.

They are potentially valuable sources of present and past

environmental information from the midlatitudes, providing

a link between the southern tropical and equatorial regions

and Antarctica. The ice fields and glaciers in Patagonia and

Tierra del Fuego show a generalized and accelerated retreat

and thinning in response to regional warming [Casassa et

al., 2007]. There are a few cases of advancing glaciers such

as Moreno Glacier [Skvarca and Naruse, 1997] and Pı́o XI

Glacier on the SPI [Rivera et al., 1997] and some south

facing glaciers of Cordillera Darwin that flow to the Beagle

Channel [Holmlund and Fuenzalida, 1995], probably be-

cause of an increase in local precipitation and/or ice

dynamic effects. There is recent evidence of a small but

significant thickening in the accumulation area of Gran

Campo Nevado at 53�S [Möller et al., 2007], which is

probably driven by increased precipitation due to enhanced

westerly circulation. Retreat during the past century reached

maximum values of 15 km for O’Higgins Glacier in the SPI

[Casassa et al., 1997], with maximum retreat rates of

787 m/a and an area decrease of 2.75 km2/a for Marinelli

Glacier in Cordillera Darwin [Porter and Santana, 2003]

and a record thinning of 30 m/a detected locally in the SPI

[Rignot et al., 2003]. Although southern South American

glaciers store a total equivalent sea level rise of only a few

centimeters [Rivera et al., 2002], which represents much

less than 10% of the total volume of mountain glaciers of

the world, they are presently contributing more than 10%

of the total global sea level rise from mountain glaciers

[Kaser et al., 2006]. Although human population in the

area is limited, southern South American glaciers are

important in terms of water resources in the region,

including generation of hydroelectric energy. There have

also been several reported cases of glacial lake outburst

floods originating from enhanced melting and ice ava-

lanches and also mudflows related to volcanic eruptions,

although no casualties have been reported.

[91] Elsewhere in the Southern Hemisphere, south of

49�S and apart from Antarctica, there are several ice masses

located on Southern Ocean islands. A precise glacier

inventory is still lacking, but an estimate including sub-

Antarctic islands geographically closer to the Antarctic

Peninsula shows a total glacier area of about 7100 km2

[Haeberli et al., 1989]. These islands include South Geor-

gia, Kerguelen, Heard, Bouvet, Macquarie, and the South

Sandwich Islands. All glaciers show a general trend for

recession [e.g., Colhoun and Goede, 1974], although stud-

ies are very limited, with mass balance data only available

for 1958 for two glaciers in South Georgia. For example, in

1947 the glaciers of Heard Island covered 288 km2 or 79%

of the island. By 1988 this had decreased by 11% to 257

km2, with about half of this change thought to have

occurred during the 1980s [Allison and Keage, 1986;

Truffer et al., 2001]. Further and increased retreat occurred

during the 1990s. These changes are producing profound

changes on the landscapes of these islands, which are home

to unique ecosystems. Glacier retreat and related landscape

and climate change on South Georgia has been accompa-

nied by a population explosion of rats that were introduced

to the island 200 years ago by whaling vessels. The rats are

rapidly exterminating colonies of local seabirds.

2.8. Summary of Main Climate Events of the Last
50 Years

[92] A summary of the main climatic events of the last

50 years developed from section 2 appears in Figure 17 to

set the context for discussing the future of the Antarctic and

Southern Ocean climate system in section 3 of this review.

3. NEXT 100 YEARS

[93] The main tools available for predicting how the

climate of the Earth will evolve in the future are coupled

atmosphere-ocean climate models. Many of the current

generation of climate models struggle to represent key

aspects of polar climate such as sea ice and near-surface

temperature [Carril et al., 2005]. However, the success of

many of the models included in the 2007 IPCC Fourth

Assessment Report (AR4) at qualitatively reproducing the

observed near-surface warming over the Antarctic Peninsula

over the last 50 years indicates an improvement of the

representation of regional change compared to the previous

IPCC Third Assessment Report models [Lynch et al., 2006].

In some cases, there is a large probability that natural
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Figure 17. Main climatic events of the last 50 years: the Antarctic context. AP, Antarctic Peninsula; EA,
East Antarctica; WA, West Antarctica; MDV, McMurdo Dry Valleys; SOI, Southern Oscillation Index;
SAM, Southern Annular Mode; SAO Semiannual Oscillation; P-E, precipitation minus evaporation; SST,
sea surface temperature; ENSO, El Niño–Southern Oscillation.
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variability contributes to differences between the models

and observations. For instance, large variability of sea ice

extent means that the negative trend of sea ice extent

simulated by the AR4 models is not significantly different

from the slight increase suggested from observations over

the last 20 years [Arzel et al., 2006].

[94] Future projections from climate models contain two

key sources of uncertainty: uncertainty associated with

factors that influence climate change and uncertainty asso-

ciated with model error. The range of scenarios produced for

the IPCC is designed to span the likely range of expected

future outcomes, and since the probability of a given

scenario being realized cannot practically be quantified,

all scenarios are considered equally likely.

[95] A popular way to assess modeling uncertainty is to

conduct ensemble experiments. This can be particularly

valuable for regional climate projections, where the pre-

dicted uncertainty is often larger than the global average.

Two types of modeling uncertainty that can be assessed

using ensemble experiments are process uncertainty and

structural modeling uncertainty [Murphy et al., 2004].

Process uncertainty can be assessed by running perturbed

physics ensembles, which are multiple versions of a given

model with parameters that control important physical

processes perturbed across their range of observational

uncertainty. Structural modeling uncertainty takes into ac-

count factors such as the use of different parameterizations

and model resolution and is most commonly done by

composing an ensemble of output from different models

from a variety of modeling centers. For seasonal forecasting

the multimodel ensemble method is suggested to be more

robust than a single model ensemble [Hagedorn et al., 2005].

Although climate model projections cannot be verified as

rigorously as seasonal predictions, the significant structural

modeling uncertainty that is known to exist (e.g., cloud and

radiances parameterizations over Antarctica [seeHines et al.,

2004]) motivates the use of multimodel ensembles such as

the output provided as part of the IPCC effort.

[96] The IPCC [2007] estimated that over the period

1990–2100, globally averaged surface temperatures would

increase by 1.8� to 6.4�C. This is for 35 greenhouse gas

emission scenarios and a number of climate models.

Weighted averages of projections of Antarctic climate

change over the 21st century were derived by Bracegirdle

et al. [2008] from 19 of the 24 models that were submitted

for the Intergovernmental Panel on Climate Change AR4

and that used the A1B scenario, which predicts an approx-

imate doubling of CO2 in the atmosphere over the next

century and for which predictions for 2100 are about the

middle of the range of the various scenarios in terms of

effect on temperature. The weighted average of the model

runs predicts that the annual mean atmospheric surface

temperatures in the Antarctic sea ice zone would increase

by 0.24� ± 0.10�C/decade [Bracegirdle et al., 2008]. In

contrast to the current near-surface temperature trends over

the Antarctic continent, which show a strong warming over

the Antarctic Peninsula and little significant change else-

where, the projected pattern of temperature change shows

strong warming over the high interior of 0.34� ± 0.10�C/
decade, indicating that the present warming will spread

beyond the peninsula. The simulated strong warming over

the continent may cause weakening of the katabatic winds

from the interior, especially in summer.

[97] On the basis of the reduction in emission of CFCs,

the WMO predicts that Antarctic ozone values will return to

pre-1980 levels around 2060–2075, which is about 10–

25 years later than previously thought [WMO, 2006].

However, other factors influencing ozone production and

destruction are difficult to forecast. Because stratospheric

ozone is influenced by temperature and wind, stratospheric

cooling induced by global warming can extend the time

period over which polar stratospheric clouds form and

therefore could lead to increased winter ozone depletion.

In contrast, cooling of the upper stratosphere, above the

zone of formation of polar stratospheric clouds, promotes

decreased photochemical ozone destruction and hence leads

to higher ozone values [Fahey et al., 2007]. In addition,

warmer surface temperatures lead to higher natural halogen

emissions from the Earth’s surface and hence accelerated

destruction of ozone in the stratosphere. This could be

further amplified through increased stratospheric water

vapor, observed over the last 2 decades, serving as nuclei

for polar stratospheric clouds [Fahey et al., 2007]. Given

that many recent studies [Shindell and Schmidt, 2004;

Arblaster and Meehl, 2006] suggest that stratospheric ozone

depletion has the strongest impact on the recent SAM

trends, future Antarctic temperature trends, which are de-

pendent upon the SAM [Schneider et al., 2006], may

depend strongly on future stratospheric ozone variability

and/or recovery.

[98] With the higher tropospheric temperatures, there is

expected to be an increase in snowfall over the Antarctic,

with an increase of 25–50% being experienced in many

areas. The weighted averages of the IPCC models [Brace-

girdle et al., 2008] suggest an increase of 25 ± 11% in

annual accumulated snowfall over the grounded Antarctic

ice sheet. However, there will not be a significant increase

of melting, since near-surface temperatures will still mainly

remain below freezing. This could lead to an increase of the

frozen water mass stored in grounded ice sheets and

contribute negatively to sea level rise [Gregory and

Huybrechts, 2007]. However, other factors such as changes

in ice dynamics should also be taken into account for a

complete assessment of the mass balance.

[99] Most model predictions suggest that with increasing

levels of greenhouse gases, the SAM may be in its positive

phase for a greater length of time [Miller et al., 2006]. This

will result in lower atmospheric pressures over the Antarctic

and higher pressures at midlatitudes. With the greater

pressure gradient, there will be a further increase in the

westerly winds over the Southern Ocean, and the center of

the continent will be more isolated from maritime air

masses. Without that isolation, the predicted warming of

the interior might be expected to be higher. Changes of the

SAM over the next 100 years are not projected to be as

strong as they have been in the last 20 years, possibly
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because of the less rapid recovery of stratospheric ozone

[Shindell and Schmidt, 2004]. The response of the ocean to

these changes is not clear but could include a strengthening

of the ACC, increased eddy activity and poleward eddy heat

flux, and possibly a shift in ACC location. Also possible is

an intensification of overturning in the Southern Ocean,

with potentially global consequences.

[100] The weighted average model analysis [Bracegirdle

et al., 2008] suggests that there will be an overall reduction

of sea ice area of 33 ± 9% by 2100 around much of the

Antarctic, accompanied by a decrease in sea ice concen-

trations [e.g., see Arzel et al., 2006]. There will also be an

increase of the amplitude of the seasonal cycle of sea ice

extent. Radar and laser satellite altimetry are currently

yielding promising results for measuring ice or snow

surface elevation over Antarctic sea ice, which, through

conversion algorithms, are used to estimate sea ice thick-

ness. While the techniques are promising, a number of

serious difficulties remain, including the variation in phys-

ical properties of the sea ice and snow cover within the

footprint of the instruments, assumptions related to snow

and ice density, and correction for the geoid.

[101] Any assessment of future change using the output

from climate models must include a consideration of the

ability of the models to represent the processes leading to

the change of interest. One example of this is the Antarctic

Peninsula warming, which has strong contributions from

different mechanisms in different seasons [Turner et al.,

2005a; Marshall, 2007]. The summer warming to the east

of the peninsula has been attributed to SAM changes, which

are well represented in most climate models. The winter

warming to the west of the peninsula has also been linked to

SAM changes and to other processes as well, such as the

retreat of sea ice (decreasing albedo) and changes to the

frequency and intensity of El Niño events; replicating these

processes accurately in models at the regional level repre-

sents a significant modeling challenge, and attributions of

change should be treated with caution.

[102] Forecasting change in mass balance in response to

climate change is needed as the basis for forecasting

changes in sea level. The former is difficult because models

of ice sheet decay do not yet take changes in ice dynamics

adequately into consideration. The 2007 report of the

Intergovernmental Panel on Climate Change forecast that

sea level will rise by less than 1 m by 2100 in response to

thermal expansion of the ocean and the melting of glaciers

at midlatitudes and in polar regions [IPCC, 2007] (and see

http://www.ipcc.ch/). That forecast is conservative because

it does not take ice dynamics into consideration. The

possibility that sea level may rise by up to 5 m by 2100,

because of melting of parts of the Greenland and West

Antarctic ice sheets, much as it did when temperatures last

rose by 2�–3�C 125,000 years ago [Jansen et al., 2007] has

been raised [Hansen, 2007].
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