330 research outputs found

    Identification of genes and gene pathways associated with major depressive disorder by integrative brain analysis of rat and human prefrontal cortex transcriptomes

    Get PDF
    Despite moderate heritability estimates, progress in uncovering the molecular substrate underpinning major depressive disorder (MDD) has been slow. In this study, we used prefrontal cortex (PFC) gene expression from a genetic rat model of MDD to inform probe set prioritization in PFC in a human post-mortem study to uncover genes and gene pathways associated with MDD. Gene expression differences between Flinders sensitive (FSL) and Flinders resistant (FRL) rat lines were statistically evaluated using the RankProd, non-parametric algorithm. Top ranking probe sets in the rat study were subsequently used to prioritize orthologous selection in a human PFC in a case?control post-mortem study on MDD from the Stanley Brain Consortium. Candidate genes in the human post-mortem study were then tested against a matched control sample using the RankProd method. A total of 1767 probe sets were differentially expressed in the PFC between FSL and FRL rat lines at (qless than or equal to0.001). A total of 898 orthologous probe sets was found on Affymetrix?s HG-U95A chip used in the human study. Correcting for the number of multiple, non-independent tests, 20 probe sets were found to be significantly dysregulated between human cases and controls at qless than or equal to0.05. These probe sets tagged the expression profile of 18 human genes (11 upregulated and seven downregulated). Using an integrative rat?human study, a number of convergent genes that may have a role in pathogenesis of MDD were uncovered. Eighty percent of these genes were functionally associated with a key stress response signalling cascade, involving NF-?B (nuclear factor kappa-light-chain-enhancer of activated B cells), AP-1 (activator protein 1) and ERK/MAPK, which has been systematically associated with MDD, neuroplasticity and neurogenesis

    Search for CP violation in D+→ϕπ+ and D+s→K0Sπ+ decays

    Get PDF
    A search for CP violation in D + → ϕπ + decays is performed using data collected in 2011 by the LHCb experiment corresponding to an integrated luminosity of 1.0 fb−1 at a centre of mass energy of 7 TeV. The CP -violating asymmetry is measured to be (−0.04 ± 0.14 ± 0.14)% for candidates with K − K + mass within 20 MeV/c 2 of the ϕ meson mass. A search for a CP -violating asymmetry that varies across the ϕ mass region of the D + → K − K + π + Dalitz plot is also performed, and no evidence for CP violation is found. In addition, the CP asymmetry in the D+s→K0Sπ+ decay is measured to be (0.61 ± 0.83 ± 0.14)%

    HLA-DRB1-DQB1 Haplotypes Confer Susceptibility and Resistance to Multiple Sclerosis in Sardinia

    Get PDF
    Introduction: Genetic predisposition to multiple sclerosis (MS) in Sardinia (Italy) has been associated with five DRB1*-DQB1* haplotypes of the human leukocyte antigen (HLA). Given the complexity of these associations, an in-depth re-analysis was performed with the specific aims of confirming the haplotype associations; establishing the independence of the associated haplotypes; and assessing patients ’ genotypic risk of developing MS. Methods and Results: A transmission disequilibrium test (TDT) of the DRB1*-DQB1 * haplotypes in 943 trio families

    Asymptomatic internal carotid artery stenosis and cerebrovascular risk stratification

    Get PDF
    Background The purpose of this study was to determine the cerebrovascular risk stratification potential of baseline degree of stenosis, clinical features, and ultrasonic plaque characteristics in patients with asymptomatic internal carotid artery (ICA) stenosis. Methods This was a prospective, multicenter, cohort study of patients undergoing medical intervention for vascular disease. Hazard ratios for ICA stenosis, clinical features, and plaque texture features associated with ipsilateral cerebrovascular or retinal ischemic (CORI) events were calculated using proportional hazards models. Results A total of 1121 patients with 50% to 99% asymptomatic ICA stenosis in relation to the bulb (European Carotid Surgery Trial [ECST] method) were followed-up for 6 to 96 months (mean, 48). A total of 130 ipsilateral CORI events occurred. Severity of stenosis, age, systolic blood pressure, increased serum creatinine, smoking history of more than 10 pack-years, history of contralateral transient ischemic attacks (TIAs) or stroke, low grayscale median (GSM), increased plaque area, plaque types 1, 2, and 3, and the presence of discrete white areas (DWAs) without acoustic shadowing were associated with increased risk. Receiver operating characteristic (ROC) curves were constructed for predicted risk versus observed CORI events as a measure of model validity. The areas under the ROC curves for a model of stenosis alone, a model of stenosis combined with clinical features and a model of stenosis combined with clinical, and plaque features were 0.59 (95% confidence interval [CI] 0.54-0.64), 0.66 (0.62-0.72), and 0.82 (0.78-0.86), respectively. In the last model, stenosis, history of contralateral TIAs or stroke, GSM, plaque area, and DWAs were independent predictors of ipsilateral CORI events. Combinations of these could stratify patients into different levels of risk for ipsilateral CORI and stroke, with predicted risk close to observed risk. Of the 923 patients with <70% stenosis, the predicted cumulative 5-year stroke rate was <5% in 495, 5% to 9.9% in 202, 10% to 19.9% in 142, and <20% in 84 patients. Conclusion Cerebrovascular risk stratification is possible using a combination of clinical and ultrasonic plaque features. These findings need to be validated in additional prospective studies of patients receiving optimal medical intervention alone. Copyright © 2010 by the Society for Vascular Surgery

    Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages

    Get PDF
    Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Updated measurements of exclusive J/ψ and ψ(2S) production cross-sections in pp collisions at √s = 7 TeV

    Get PDF
    The differential cross-section as a function of rapidity has been measured for the exclusive production of J/ψ and ψ(2S) mesons in proton–proton collisions at √s = 7 TeV, using data collected by the LHCb experiment, corresponding to an integrated luminosity of 930 pb−1. The cross-sections times branching fractions to two muons having pseudorapidities between 2.0 and 4.5 are measured to be where the first uncertainty is statistical and the second is systematic. The measurements agree with next-to-leading order QCD predictions as well as with models that include saturation effects

    Measurement of the Λb0, Ξb-, and Ωb- Baryon Masses

    Get PDF
    Bottom baryons decaying to a J/ψ meson and a hyperon are reconstructed using 1.0  fb-1 of data collected in 2011 with the LHCb detector. Significant Λb0→J/ψΛ, Ξb-→J/ψΞ- and Ωb-→J/ψΩ- signals are observed and the corresponding masses are measured to be M(Λb0)=5619.53±0.13(stat.)±0.45(syst.)  MeV/c2, M(Ξb-)=5795.8±0.9(stat.)±0.4(syst.)  MeV/c2, M(Ωb-)=6046.0±2.2(stat.)±0.5(syst.)  MeV/c2, while the differences with respect to the Λb0 mass are M(Ξb-)-M(Λb0)=176.2±0.9(stat.)±0.1(syst.)  MeV/c2, M(Ωb-)-M(Λb0)=426.4±2.2(stat.)±0.4(syst.)  MeV/c2. These are the most precise mass measurements of the Λb0, Ξb- and Ωb- baryons to date. Averaging the above Λb0 mass measurement with that published by LHCb using 35  pb-1 of data collected in 2010 yields M(Λb0)=5619.44±0.13(stat.)±0.38(syst.)  MeV/c2
    corecore