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1 Introduction

Cabibbo-suppressed charm decays are the focus of searches for direct CP violation (CPV)

in the charm sector. In these decays, direct CPV will occur if tree and loop (penguin)

processes interfere with different strong and weak phases. Furthermore, contributions from

physics beyond the Standard Model may appear in the virtual loops [1]. Evidence for

direct CPV in charm decays was reported by LHCb and subsequently by CDF using the

D0 → K−K+ and D0 → π−π+ channels [2, 3]. Although the latest results do not confirm

the evidence for CPV in the charm sector [4, 5], further studies using different decay

modes remain well motivated. The large branching ratios of D0 → K−K+ compared

to D0 → π−π+ decays, and of the D+ → K−K+π+ compared to the D+ → π−π+π+

mode, suggest that the contribution of the penguin amplitude may be significant in both

D0 → K−K+ and D+ → K−K+π+ decays [6]. The inclusion of charge conjugate decays is

implied where appropriate throughout this paper. In D+ decays, a non-zero CP asymmetry

would indicate unambiguously the presence of direct CPV. The D+ → φπ+ decay is a

particularly promising channel for CPV searches due to its large branching ratio of (2.65±
0.09) × 10−3 [7]. A recent investigation of this decay at the Belle experiment yielded

a CP -violating charge asymmetry of (+0.51 ± 0.28 ± 0.05)% [8], while BaBar measured

(−0.3± 0.3± 0.5)% [9].

Searches for CPV in charm decays with the LHCb experiment rely on a good under-

standing of the charge asymmetries both in D meson production in pp collisions and in the

detection of the final states. These effects are studied using control decay modes in which

no CPV is expected, and cancelled by measuring the differences in asymmetries between

different final states or by comparing measurements made in one area of the Dalitz plot

relative to another.
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To investigate CPV in the D+ → φπ+ decay, the D+ → K0
Sπ

+ decay with K0
S → π−π+

is used as a control channel. This decay is itself sensitive to CPV via the interference of

Cabibbo-favoured and doubly Cabibbo-suppressed amplitudes. However, the CP asymme-

try in this channel is predicted to be at most 0.01% in the Standard Model [10], and there

is less scope for contributions from non-Standard Model dynamics than in the D+ → φπ+

decay as no penguin amplitudes contribute [1]. Therefore CPV in the D+ → K0
Sπ

+ de-

cay is assumed to be negligible. The CP asymmetry in the D+ → φπ+ region of the

D+ → K−K+π+ Dalitz plot is given by, to first order,

ACP(D+ → φπ+) = Araw(D+ → φπ+)−Araw(D+ → K0
Sπ

+) +ACP(K0/K0), (1.1)

where the raw charge asymmetry Araw is defined as

Araw =
ND+ −ND−

ND+ +ND−
, (1.2)

for yields ND± of positively- or negatively-charged signal or control-mode candidates. The

kaon asymmetry ACP(K0/K0) is the correction for CPV in the neutral kaon system and is

−0.028% with a systematic uncertainty of 0.028% [11]. To first order, the use of the control

channel cancels the effects of the D± production asymmetry of (−0.96± 0.26± 0.18)% [11]

and of any asymmetry associated with the detection of the pion [12]. In the proximity

of the φ meson mass of 1019.46 ± 0.02 MeV/c2 [7] in the D+ → K−K+π+ Dalitz plot,

the kaons have almost identical momentum distributions. Therefore the kaon interaction

asymmetry cancels between theK+ andK− meson daughters of the φ resonance. Hence the

search is restricted to decays with K+K− invariant masses in the range 1.00 < mK−K+ <

1.04 GeV/c2.

A concurrent measurement of the CP asymmetry in the D+
s → K0

Sπ
+ decay, approxi-

mated as

ACP(D+
s → K0

Sπ
+) = Araw(D+

s → K0
Sπ

+)−Araw(D+
s → φπ+) +ACP(K0/K0), (1.3)

is performed using the D+
s → φπ+ decay as a control channel. This decay is also Cabibbo-

suppressed, with similar contributions from loop amplitudes as the D+ → φπ+ decay, but

the number of signal candidates is substantially lower. This is partly due to the lower

D+
s production cross-section [13] and partly because only K0

S mesons with decay times of

less than 40 ps are used in this analysis. In eq. (1.3), the effect of the CPV in the neutral

kaon system has a sign opposite to that in eq. (1.1) relative to the raw asymmetry in the

D+
(s) → K0

Sπ
+ decay because the D+

s decays predominantly to a K0 meson while the D+

decays to a K0.

Within the Standard Model, CPV in singly Cabibbo-suppressed charm decays with

contributing tree and penguin amplitudes is expected to be [15]

ACP ≈
∣∣∣∣Im

(
VubV

∗
cb

VusV ∗cs

)∣∣∣∣R sin δS , (1.4)

where R is a number of order one that depends on hadronic matrix elements, δS is the strong

phase difference between tree and penguin amplitudes, and Vij are elements of the CKM

– 2 –
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Figure 1. Variation of the overall phase of the D+ decay amplitude in the φ mass region of

the Dalitz plot, from a simulation study based on the CLEO-c amplitude model in which the

phase is defined relative to that of the K∗(892)0 resonance [14]. To calculate ACP|S , the region

is divided into rectangular zones as shown, corresponding to 1.00 < m(K−K+) < 1.02 GeV/c2

and 1.02 < m(K−K+) < 1.04 GeV/c2 along the y-axis, and to m2(K−π+) < 1.48 GeV2/c4 and

m2(K−π+) > 1.48 GeV2/c4 along the x-axis.

matrix. In the region of the φ resonance in the D+ → K−K+π+ Dalitz plot, several other

amplitudes contribute to the overall matrix element and interfere with the φ meson [9, 14].

A recent amplitude analysis of this decay mode from the CLEO-c collaboration [14] yields

a matrix element with a relative strong phase that varies rapidly across the φ region, as

shown in figure 1. The isobar amplitude model favoured by CLEO-c (fit ‘B’ in ref. [14])

contains major contributions from the φ, K∗(892)0, K∗0 (1430)0 and K∗0 (800) resonances.

The phase is measured relative to that of the K∗(892)0 meson. The variation in phase

means that it is possible that a constant CP -violating asymmetry could be cancelled out

when the different regions of the φ resonance are combined to calculate ACP. Hence we

define a complementary observable called ACP|S . The area around the φ resonance in the

Dalitz plot is split into four rectangular regions A−D defined clockwise from the top-left

as shown in figure 1. The division is chosen to minimise the change in phase within each

region. A difference between the two diagonals, each made of two regions with similar

phases, is calculated as

ACP|S =
1

2

(
AAraw +ACraw −ABraw −ADraw

)
. (1.5)

This observable is not affected by the D± production asymmetry and is robust against

systematic biases from the detector.

To test the hypothesis that ACP|S can sometimes be more sensitive to CP violation

than ACP, a study is performed using simulated pseudo-experiments in which plausible

types of CPV are introduced into the CLEO-c amplitude model [14]. The matrix elements

for D+ and D− decays are separately modified in a number of ways, as specified in table 1,

and events are generated from the resulting probability density functions. In each simulated

sample, approximately the same number of events as in the dataset are produced, and the
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Type of CPV Mean ACP (%) Mean ACP|S (%)

3◦ in φ phase −0.01 (0.1σ) −1.02 (5.1σ)

0.8% in φ amplitude −0.50 (2.5σ) −0.02 (0.1σ)

4◦ in K∗0 (1430)0 phase 0.52 (2.6σ) −0.89 (4.5σ)

4◦ in K∗0 (800) phase 0.70 (3.5σ) 0.10 (0.5σ)

Table 1. Expected mean values of ACP and ACP|S for different types of CP violation introduced

into the simulated Dalitz plots, together with the significance with which a signal could be observed

given estimated overall uncertainties in ACP and ACP|S of 0.2%.

values of ACP and ACP|S are compared. The effects of background and of the reconstruction

and signal selection efficiency variation across the φ region are negligible.

The level of CPV in the pseudo-experiments is chosen to give an expected result with

significance of around three Gaussian standard deviations in at least one observable. For

each type of CPV, twenty Dalitz plots are simulated. The mean values of ACP and ACP|S
in these pseudo-experiments are given in table 1, together with the significance with which

these signals could be observed in the dataset under study. The table indicates that some

types of CPV can be observed more effectively with ACP and others with ACP|S .

It was found in ref. [16] that the sensitivity to CPV can vary substantially with the

details of the amplitude model. Therefore these simple simulations should not be treated as

accurate predictions, but instead as a guide to the relative sensitivity of the two observables.

2 Detector

The LHCb detector [17] is a single-arm forward spectrometer covering the pseudorapidity

range 2 < η < 5, designed for the study of particles containing b or c quarks. The detec-

tor includes a high precision tracking system consisting of a silicon-strip vertex detector

(VELO) surrounding the pp interaction region, a large-area silicon-strip detector located

upstream of a dipole magnet with a bending power of about 4 Tm, and three stations

of silicon-strip detectors and straw drift tubes placed downstream. The combined track-

ing system has momentum resolution ∆p/p that varies from 0.4% at 5 GeV/c to 0.6% at

100 GeV/c, and impact parameter resolution of 20µm for tracks with high transverse mo-

mentum pT. Charged hadrons are identified using two ring-imaging Cherenkov detectors.

Photon, electron and hadron candidates are identified by a calorimeter system consisting of

scintillating-pad and preshower detectors, an electromagnetic calorimeter and a hadronic

calorimeter. Muons are identified by a system composed of alternating layers of iron and

multiwire proportional chambers. The trigger [18] consists of a hardware stage, based on

information from the calorimeter and muon systems, an inclusive software stage, which uses

the tracking system, and a second software stage that exploits the full event information.

3 Dataset and selection

The data sample used in this analysis corresponds to an integrated luminosity of 1.0 fb−1 of

pp collisions at a centre of mass energy of 7 TeV, and was collected by the LHCb experiment

– 4 –
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in 2011. The polarity of the LHCb magnet was changed several times during the run, and

approximately half of the data were taken with each polarity, referred to as ‘magnet-up’ and

‘magnet-down’ data hereafter. To optimise the event selection and estimate background

contributions, 12.5 million pp collision events containing D+ → K0
Sπ

+, K0
S → π−π+ decays

and 5 million events containing D+ → K−K+π+ decays are simulated with Pythia 6.4 [19]

with a specific LHCb configuration [20]. Hadron decays are described by EvtGen [21]. The

interaction of the generated particles with the detector and its response are implemented

using the Geant4 toolkit [22, 23] as described in ref. [24].

To ensure the dataset is unbiased, the trigger must accept candidates in well-defined

ways that can be shown to be charge-symmetric. A trigger decision may be based on part or

all of the D+
(s) signal candidate, on other particles in the event, or both. For example, signal

decays triggered at the hardware level exclusively by the pion from the D+
(s) decay are not

used, as they are shown in section 5 to have large detector-dependent charge asymmetries.

For an event to be accepted by the hardware trigger, two criteria, not mutually exclusive,

are used: the decision must be based on one of the daughter tracks of the K0
S or φ meson,

or on a particle other than the decay products of the D+
(s) candidate. In the first case the

same track must also activate the inclusive software trigger. This software trigger requires

that one of the tracks from the signal D+
(s) candidate has pT > 1.7 GeV/c and distance of

closest approach to the primary vertex (PV) of at least 0.1 mm. The second stage of the

software trigger is required to find combinations of three tracks that meet the criteria to

be signal decays.

Candidate D+
(s) → φπ+ decays are reconstructed by combining the tracks from two

oppositely charged particles that are identified by the RICH detectors as kaons with one

track identified as a pion. The combined invariant mass of the two kaons is required to

lie in the range 1.00 < mK−K+ < 1.04 GeV/c2. The scalar sum of the pT of the daughter

particles must exceed 2.8 GeV/c.

To reconstruct D+
(s) → K0

Sπ
+ candidates, pairs of oppositely charged particles with

a pion mass hypothesis are combined to form K0
S candidates. Only those with pT >

700 MeV/c and invariant mass within 35 MeV/c2 of the world average K0
S mass [7] are re-

tained. Accepted candidates are then combined with a third charged particle, the bachelor

pion, to form a D+
(s) candidate. The mass of the K0

S meson is constrained to its known

value in the kinematic fit. All three pion tracks must be detected in the VELO, so only

K0
S mesons with short decay times are used.

Further requirements are applied in order to reduce background from random track

combinations and partially reconstructed charm and B decays. Both K0
S and D+

(s) candi-

dates are required to have a vertex with acceptable fit quality. Daughters of the φ and

K0
S mesons must have momentum p > 2 GeV/c and pT > 250 MeV/c. Impact parameter

requirements are used to ensure that all the daughters of the D+
(s) candidate do not orig-

inate at any PV in the event. To remove non-resonant D+ → π−π+π+ candidates, the

K0
S meson decay vertex must be displaced by at least 10 mm in the forward direction from

the decay vertex of its parent D+ meson. The bachelor pion in both final states must

have p > 5 GeV/c and pT > 500 MeV/c, must not come from any PV, and must be posi-

tively identified as a pion rather than as a kaon, electron or muon. In addition, fiducial

– 5 –
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Figure 2. Invariant mass distribution of selected (a) D+ → φπ+, (b) D− → φπ−, (c) D+ → K0
Sπ

+

and (d) D− → K0
Sπ
− candidates. The data are represented by symbols with error bars. The

red dashed curves indicate the signal lineshapes, the green solid lines represent the combinatorial

background shape, and the green dotted lines represent background from mis-reconstructed D+
s →

φπ+π0 decays in (a) and (b), and D+
s → K0

Sπ
+π0 or D+

s → K0
SK

+ decays in (c) and (d). The blue

solid lines show the sum of all fit components.

requirements are applied [2] to exclude regions with a large tracking efficiency asymmetry.

The D+
(s) candidate is required to have 1.5 < pT < 20.0 GeV/c and pseudorapidity η in the

range 2.2 < η < 4.4, to point to a PV (to suppress D from B decays), and to have a decay

time significantly greater than zero. The proportion of events with more than one D+
(s)

candidate is negligible.

The invariant mass distributions of selected candidates in the two final states are

presented in figure 2. After applying the selection and trigger requirements, 1,203,930

D±(s) → K0
Sπ
± and 4,704,810 D±(s) → φπ± candidates remain in the mass ranges shown in

the figure. The distribution of decays in the φ region of the D+ → K−K+π+ Dalitz plot

is shown in figure 3.

4 Determination of the yields and asymmetries

For the measurement of ACP, the signal yields are measured in 12 bins of transverse mo-

mentum pT and pseudorapidity η, using binned likelihood fits to the distributions of the

invariant masses m, where m is either mφπ+ or mK0
Sπ

+ . The values of ACP in each bin

– 6 –
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Figure 3. Observed density of decays in the D+ → K−K+π+ Dalitz plot, with the regions A-D

labelled as described in the text.
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Figure 4. Distributions of transverse momentum pT and pseudorapidity η for (a) D+ → K0
Sπ

+

and (b) D+ → φπ+ candidates with invariant masses m in the range 1845 < m < 1895 MeV/c2.

Candidates that do not fall into the 12 rectangular bins are not used in the analysis.

are calculated and a weighted average over the bins is performed to obtain the final result.

This procedure is adopted because the distributions of the two decays in pT and η differ

slightly, as shown in figure 4, and the D± production asymmetry may also vary over this

range [11]. The pT−η binning therefore reduces a potential source of systematic bias. The

shapes of the D+
(s) → K0

Sπ
+ mass peaks are described by single Cruijff functions [25],

f(m) ∝ exp

[
−(m− µ)2

2σ2 + (m− µ)2αL,R

]
(4.1)

with the peak position defined by the free parameter µ, the width by σ, and the tails by αL
and αR. The parameter αL is used for m < µ and αR for m > µ. In the φπ+ final state,

Crystal Ball functions [26] are added to the Cruijff functions to account for the tails of

the mass peaks. The signal lineshapes are tested on simulated data and found to describe

the data well. The background is fitted with a straight line and an additional Gaussian

component centred at low mass to account for partially reconstructed D+
s → K0

S (φ)π+π0

decays. This background mostly lies outside the interval in invariant mass that is fitted.
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Decay mode Signal yield (×103)

D+ → φπ+ 1576.9± 1.5

D+
s → φπ+ 3010.2± 2.2

D+ → K0
Sπ

+ 1057.8± 1.2

D+
s → K0

Sπ
+ 25.6± 0.2

Table 2. Numbers of signal candidates in the four decay modes from the mass fits, with statistical

uncertainties only.

In the K0
Sπ

+ case there is also a cross-feed component from the D+
s → K0

SK
+ decay mode,

where the K+ meson is misidentified as a pion. In the fit to data, the cross-feed yield

and charge asymmetry are allowed to vary but the shape is fixed from the simulation. It

is modelled by a Crystal Ball function. The yield of cross-feed is found to be small, at

6014± 817 decays, or 0.57% of the D+ yield.

The fits are performed simultaneously over four subsamples (D+
(s) magnet-up, D+

(s)

magnet-down, D−(s) magnet-up, and D−(s) magnet-down data) with the peak positions,

widths and yields of the D+
(s) and background allowed to vary independently in the four

subsamples. All other parameters are shared. The peak positions are found to differ be-

tween charges and magnet polarities by around 0.2 MeV/c2. The raw asymmetries are then

determined from the yields. The fitted yields are given in in table 2.

The results are cross-checked with a sideband subtraction procedure under the assump-

tion of a linear background. The background is sufficiently small relative to the signal in

the D+ → φπ+ channel that the charge asymmetry can be calculated by counting D+ and

D− candidates in a mass interval defined around the D+ mass of 1845 < m < 1895 MeV/c2.

Therefore, the yields for ACP|S are evaluated using this simple technique. The resolution

in the Dalitz plot is improved by constraining the D+ candidate mass to the world average

value [7], instead of leaving it as a free parameter. This has a small effect which is assigned

as a systematic uncertainty in section 5. In the measurement of ACP, the background in

the D+ → K0
Sπ

+ channel is larger and therefore the results are taken from fits.

5 Systematic uncertainties and cross-checks

The analysis methods are constructed to ensure that systematic biases on the raw charge

asymmetries cancel in the end result. The dominant systematic uncertainties in both ACP

and ACP|S are determined by considering control decay channels in which no asymmetry

is expected.

The main systematic uncertainty in ACP results from kinematic differences between

the φπ+ and K0
Sπ

+ final states, which lead to imperfections in the cancellation of detector

asymmetries between them. Some detector asymmetries arise from small differences in

the tracking efficiency or acceptance across the bending plane of the magnet, i.e. between

the left and right halves of the detector. The response of the hardware trigger is also

known to be asymmetric, because it does not take into account which way particles bend

– 8 –
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in the magnetic field when it measures their transverse energy ET or pT. In data taken

with one magnet polarity, a pion from a D+ decay will bend in the opposite direction to

a pion from a D− decay, and if one of these pions is bent into an inefficient part of the

tracking system and is lost while the other is detected, a charge asymmetry will result. The

same situation could occur if one pion is bent inwards and so does not meet the hadron

trigger ET threshold while a pion of the opposite charge is bent outwards and therefore

has enough measured ET to activate the trigger. This cancels to a good approximation

between the left and right halves of the detector, but any left/right asymmetry in the

calorimeters or muon stations could result in imperfect cancellation, biasing the charge

asymmetry. The effect of these asymmetries on this analysis is not eliminated by the

subtraction of the asymmetries in the two final states in eq. 1.1 as the two decays do not

have identical kinematic properties. Thus, in the data taken with one magnet polarity,

the charge asymmetry can be affected. However, when the magnet polarity is reversed,

the bias on the asymmetry changes sign because the particles are deflected in the opposite

directions. The values of ACP in D+ → φπ+ decays are found to differ by (0.81± 0.28)%

between the data taken with magnet polarity up and data taken with polarity down.

The effect is removed, to a very good approximation, by combining results obtained with

opposite magnet polarities, A↑CP and A↓CP, in an average with equal weights,

ACP =
A↑CP +A↓CP

2
. (5.1)

However, non-cancelling effects can bias the measurement and are considered as sources

of systematic uncertainty. The data triggered by the K0
S or φ meson at the hardware

level are charge-symmetric to a good approximation, and are assumed to be unbiased.

However, in data triggered by another particle in the event, the particle that activates

the trigger may be correlated to the signal decay. For example, a signal decay is often

accompanied by a D± meson of the opposite charge. If this meson decays to a charged

hadron, electron or muon, the daughter particle, which is more likely to have the opposite

charge to the signal D±, could fire the trigger. The different kinematics and acceptance

of the signal and control channel studied in this analysis mean that the cancellation of

charge-asymmetric trigger efficiencies between them may not be complete. To study the

size of this effect, a sample of approximately 57 million D+ → K−π+π+ decays is selected

using the same criteria as those for the signal. The charge asymmetries in the differently

triggered datasets are given in table 3. Small but significant discrepancies between data

from different triggers are observed, indicating that the hardware triggers may introduce

small biases into the dataset. The large difference between magnet up and magnet down

data in the sample that is triggered by the muon detectors is due to a charge-asymmetric

pT threshold in the detector, but this cancels when the magnet polarities are averaged. A

systematic uncertainty equal to the maximum deviation from the average charge asymmetry

of (−2.034± 0.014)% in any of the triggers is assigned. This occurs in the electron trigger

and the difference is 0.114%. The precision with which effects cancel between φπ+ and

K0
Sπ

+ final states in the analysis cannot be quantified accurately. Therefore the most

conservative approach is adopted and no cancellation is assumed.
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Trigger type Magnet up Magnet down Average Difference

Hadron −2.037± 0.032 −1.970± 0.027 −2.003± 0.021 −0.068± 0.042

Muon −2.361± 0.041 −1.607± 0.035 −1.984± 0.027 −0.754± 0.053

Electron −2.094± 0.048 −2.201± 0.041 −2.148± 0.031 0.106± 0.063

Photon −1.937± 0.070 −2.230± 0.060 −2.083± 0.046 0.293± 0.092

Overall average −2.128± 0.021 −1.940± 0.018 −2.034± 0.014 −0.188± 0.028

Table 3. Raw charge asymmetries, in %, in samples of the D+ → K−π+π+ control decay in which

a particle not from the signal decay activated various hardware triggers.

Binning Change in ACP (×10−4)

No binning 8.3± 3.7

12 bins (3×D+
(s) pT, 4×D+

(s) η) 0.6± 1.7

48 bins (8×D+
(s) pT, 6×D+

(s) η) −2.9± 1.1

192 bins (2× π+ p, 8× π+ φ, 4×D+
(s) pT, 3×D+

(s) η) −2.4± 1.1

180 bins (3× π+ pT, 5× π+ η, 4×D+
(s) pT, 3×D+

(s) η) 3.5± 2.6

1440 bins (3× π+ pT, 5× π+ η, 8× π+ φ, 4×D+
(s) pT, 3×D+

(s) η) 2.5± 1.6

Table 4. Changes to the final result observed with various alternative kinematic binning schemes.

The default scheme uses four bins of D+
(s) pT and three bins of D+

(s) η. The variable φ is the azimuthal

angle around the proton beams. The statistical uncertainties are determined by subtracting the

uncertainties on the alternative result and the default result in quadrature.

Residual detector asymmetry differences between the D+ → φπ+ and D+ → K0
Sπ

+

decays due to their different kinematics are studied by applying several different kinematic

binning schemes to the data. The measured asymmetry is found to be stable with varia-

tions in the binning, suggesting that the detector asymmetries are small. The results are

summarised in table 4. The largest discrepancy in raw asymmetry, as expected, results

from using no kinematic binning, as this does not account for any variation of the D± pro-

duction asymmetry across the kinematic region. The next largest difference with respect

to the baseline binning scheme, of 0.035%, is assigned as a systematic uncertainty on the

asymmetry due to residual kinematic differences between decay modes.

The ACP|S observable is highly robust against systematic uncertainties. Any effect

that does not vary across the Dalitz plot will cancel in the subtraction in eq. 1.5, and

effects that do vary with K−π+ or K−K+ invariant mass across the φ region will also

cancel when the regions are combined in the diagonal difference. For example, the asym-

metry in the interaction of the charged kaons with the detector material would affect the

asymmetry difference between decays with high and low values of K−π+ invariant mass,

which is correlated with the momenta of the kaons. However such effects cancel to a good

approximation in both observables, as shown below. Only quantities that vary between the

diagonals of the Dalitz plot region would lead to significant systematic biases on ACP|S . To

test for the presence of such effects, ACP|S is calculated in the D+
s → φπ+ control decay,
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which has similar kinematics to the signal despite the different Dalitz plot distributions of

the events. The result is (−0.120 ± 0.119)%, which is compatible with zero as expected.

The statistical uncertainty on this result, added in quadrature to the central value, gives a

measure of the precision with which detector effects are known to cancel. Thus a value of

0.169% is assigned as the main systematic uncertainty in ACP|S .

The systematic uncertainty due to charged kaon interaction asymmetries is studied

by determining the effect on the result of enlarging the size of the K−K+ mass window

under study. This increases the differences between the momentum spectra of the kaons,

which increases the effect of the interaction asymmetry because it depends strongly on

momentum. The consistency of this procedure is checked with simulation studies. The

systematic uncertainty is found to be 0.031% in ACP for the D+ decay, 0.002% for ACP in

the D+
s decay and 0.009% in ACP|S .

The asymmetric interaction of the neutral kaons with detector material is studied us-

ing the method outlined in ref. [27] to account for coherent regeneration. The amount of

material each kaon passes through before it decays and the predicted differences between

the K0 and K0 material interaction cross sections [28] are used to determine an expected

asymmetry. The size of the effect is found to be (0.039 ± 0.004)%, where the uncertainty

is due to imperfect knowledge of the amount of material in the detector. This is consis-

tent with the dependence of the asymmetry on the depth of material passed through by

the kaons seen in data. The asymmetry is assigned as a systematic uncertainty on the

ACP measurements.

A systematic uncertainty of 0.056% is associated with the resolution in the Dalitz

plot variables for ACP|S , due to candidates migrating across the boundaries of the regions

A − D. This is determined by taking the difference between results before and after the

D+ mass is constrained to the world average value. This procedure is repeated for ACP,

but as expected the systematic uncertainty is much smaller.

Further small systematic uncertainties arise from the mass fitting, from the calculation

of the effect of the CPV in the neutral kaon system [11], from the choice of fiducial cuts, from

modelling of the cross-feed in the D+ → K0
Sπ

+ decay, and from neglecting the background

in the calculation of ACP|S . In the simulation, the contribution of D from B decays is

found to differ between the final states by around 1%, and this leads to another small

uncertainty since the production asymmetries for B and D decays may differ.

Other potential sources of systematic uncertainty, such as the difference in selection

criteria between the two final states, are negligible. The kinematic distributions of daughter

particles are checked for biases. The variation of the asymmetries with time during the

data taking period is also considered. The systematic uncertainties are summarised in

table 5.

As a further cross check, the difference in raw asymmetry between the D+
s → φπ+

and D+
s → π−π+π+ decays is calculated. Since these are both Cabibbo-favoured tree-level

decays, this quantity is expected to be zero. The D+
s → π−π+π+ decay has reasonably

similar kinematic properties and a similar yield in our dataset to the D+ → K0
Sπ

+ decay,

and the D+
s → φπ+ is very similar to the corresponding D+ decay. Thus the kinematic

differences between the final states in the D+
s control decays are similar to those in the D+

signal channels.
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Source ACP (D+) [%] ACP (D+
s ) [%] ACP|S [%]

Triggers 0.114 0.114 n/a

D+
s control sample size n/a n/a 0.169

Kaon asymmetry 0.031 0.002 0.009

Binning 0.035 0.035 n/a

Resolution 0.007 0.006 0.056

Regeneration 0.039 0.039 n/a

Fitting 0.033 0.033 n/a

Kaon CP violation 0.028 0.028 n/a

Fiducial effects 0.022 0.022 n/a

Backgrounds 0.008 n/a 0.007

D from B 0.003 0.015 0.003

Total 0.138 0.136 0.178

Table 5. Systematic uncertainties on the three measurements. The abbreviation n/a is used where

the systematic effect does not apply. The row labelled ‘Backgrounds’ represents the uncertainty in

modelling the cross-feed in ACP and the uncertainty from ignoring the background in ACP|S .
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Figure 5. Invariant mass distribution of selected D±(s) → π∓π±π± decays. The data are rep-

resented by symbols with error bars. The red dashed peaks indicate the signal decays, the green

solid lines represent the combinatorial background shape, and the green dotted lines represent back-

grounds from mis-reconstructed D+
s → π−π+π+π0 decays. The blue solid line shows the sum of all

fit components.

The D+
s → π−π+π+ decay is reconstructed using the same selection as for the signal

decays. The hardware trigger must be activated by a particle that does not form part of the

signal decay, or by the π− meson, or by a random π+ meson. The resulting sample has a

large background due to random pions from the primary vertex. To remove this, the regions

of the D+
s → π−π+π+ Dalitz plot in which one of the pions has a low momentum in the
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D+
s rest frame are excluded from the sample by removing the areas of the Dalitz plot below

the f0(980) resonance. The requirement on π−π+ invariant mass m2
π−π+ > 0.75 GeV2/c4 is

applied to both π−π+ meson pairs. The mass distribution of the candidates that remain

is fitted with a Cruijff function in the 12 kinematic bins described in section 4 and the raw

charge asymmetries in the D+
s decay are calculated.

The weighted average of the raw asymmetry differences in the 12 kinematic bins is

(0.22± 0.12)%. The systematic uncertainty on this is similar to that on the main analysis,

or 0.13%, so the result differs from zero by 1.3 standard deviations. This discrepancy is

assumed to be a statistical fluctuation and no additional uncertainty is assigned.

Many additional cross-checks and comparisons of the data samples are performed.

The raw asymmetries are consistent with those observed in the measurements of the D+

and D+
s production asymmetries [11, 12]. The different triggers used in the analysis give

statistically compatible results. A study of the values of ACP in individual bins gives no

indication of any dependence on pT and η. The regions A −D used in the calculation of

ACP|S have fully compatible asymmetries.

6 Results and conclusion

Searches for CP violation in the φ region of the D+ → K−K+π+ Dalitz plot and in the

D+
s → K0

Sπ
+ decay mode are performed. The results are

ACP(D+ → φπ+) = (−0.04± 0.14± 0.14)%,

ACP|S(D+ → φπ+) = (−0.18± 0.17± 0.18)%,

ACP(D+
s → K0

Sπ
+) = (+0.61± 0.83± 0.14)%,

consistent with existing measurements. The first and third measurements assume negligible

CP violation effects in the D+ → K0
Sπ

+ and D+
s → φπ+ control channels, respectively.

The ACP|S observable is shown to increase the sensitivity of the analysis to certain types

of CP violation significantly, but there is no evidence for CP violation in either decay. This

is the most precise analysis of CP violation in the φ region of the D+ → K−K+π+ Dalitz

plot to date. The results suggest that any CP asymmetries in decays within this region are

unlikely to exceed the approximate level of effects currently believed to be possible within

the Standard Model.
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b Università di Bari, Bari, Italy
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