290 research outputs found

    Does the legacy of long-term crop rotation influence crop residue decomposition dynamics and potential soil N2O flux?

    Get PDF
    Non-Peer ReviewedResearch has demonstrated that including winter wheat and under-sown red clover into corn-soybean rotations has the potential to improve soil health indices and N use efficiency. Yet, the mechanisms that explain these benefits are poorly understood. One hypothesized explanation is, that by including wheat/red clover in corn-soybean rotations, the soil N supply improves or that the soil N cycle tightens; thereby lowering potential N loss. To address this hypothesis, in Oct 2017 we collected soil cores (10 cm deep, 8 cm diam.) from the second-year corn phase of a 39-yr long-term trial where the following rotations had been maintained: corn-corn-soy-soy (CCSS) or corn-corn-soy-wheat/red clover (CCSWrc), under conventional tillage (CT) or no-till (NT). For each rotation legacy, the soil samples were sieved (2 mm) and air-dried prior to establishing 50 g soil microcosms that were amended with 15N-enriched corn stover or roots (1 and 0.2 g of dried and ground biomass, respectively). Natural abundance and unamended controls were included in the randomized complete block, replicated design. The microcosms were incubated for 14 d at 70% water-filled pore space inside 1L mason jars. Soil and gas samples were periodically collected to measure crop residue decomposition dynamics (via CO2 fluxes and 15N mineralization) and 15N2O fluxes. The results demonstrated higher residue-derived stover N mineralization, and significantly higher N2O stover emissions (by more than a twofold) from the CCSWrc vs the CCSS legacy (P=0.0075). Corn stover and root residues showed distinct N2O patterns, where corn roots (but not stover) appeared to stimulate soil-primed N2O emissions. Overall, our findings indicate that crop residues are processed differently by soil microorganisms depending on the long-term crop rotation legacy

    Geostrophic balance preserving interpolation in mesh adaptive shallow-water ocean modelling

    Full text link
    The accurate representation of geostrophic balance is an essential requirement for numerical modelling of geophysical flows. Significant effort is often put into the selection of accurate or optimal balance representation by the discretisation of the fundamental equations. The issue of accurate balance representation is particularly challenging when applying dynamic mesh adaptivity, where there is potential for additional imbalance injection when interpolating to new, optimised meshes. In the context of shallow-water modelling, we present a new method for preservation of geostrophic balance when applying dynamic mesh adaptivity. This approach is based upon interpolation of the Helmholtz decomposition of the Coriolis acceleration. We apply this in combination with a discretisation for which states in geostrophic balance are exactly steady solutions of the linearised equations on an f-plane; this method guarantees that a balanced and steady flow on a donor mesh remains balanced and steady after interpolation onto an arbitrary target mesh, to within machine precision. We further demonstrate the utility of this interpolant for states close to geostrophic balance, and show that it prevents pollution of the resulting solutions by imbalanced perturbations introduced by the interpolation

    In situ monitoring of GaSb, GaInAsSb, and AlGaAsSb

    Get PDF
    Suitability of silicon photodiode detector arrays for monitoring the spectral reflectance during epitaxial growths of GaSb, AlGaAsSb, and GaInAsSb, which have cutoff wavelengths of 1.7, 1.2, and 2.3 {micro}m, respectively, is demonstrated. These alloys were grown lattice matched to GaSb in a vertical rotating-disk reactor, which was modified to accommodate near normal reflectance without affecting epilayer uniformity. By using a virtual interface model, the growth rate and complex refractive index at the growth temperature are extracted for these alloys over the 600 to 950 nm spectral range. Excellent agreement is obtained between the extracted growth rate and that determined by ex-situ measurement. Optical constants are compared to theoretical predictions based on an existing dielectric function model for these materials. Furthermore, quantitative analysis of the entire reflectance spectrum yields valuable information on the approximate thickness of overlayers on the pregrowth substrate

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.Comment: Submitted to Physics Letters
    • …
    corecore