25 research outputs found

    Plant height and hydraulic vulnerability to drought and cold

    Get PDF
    Understanding how plants survive drought and cold is increasingly important as plants worldwide experience dieback with drought in moist places and grow taller with warming in cold ones. Crucial in plant climate adaptation are the diameters of water-transporting conduits. Sampling 537 species across climate zones dominated by angiosperms, we find that plant size is unambiguously the main driver of conduit diameter variation. And because taller plants have wider conduits, and wider conduits within species are more vulnerable to conduction-blocking embolisms, taller conspecifics should be more vulnerable than shorter ones, a prediction we confirm with a plantation experiment. As a result, maximum plant size should be short under drought and cold, which cause embolism, or increase if these pressures relax. That conduit diameter and embolism vulnerability are inseparably related to plant size helps explain why factors that interact with conduit diameter, such as drought or warming, are altering plant heights worldwide

    Clathrin-dependent and independent endocytic pathways in tobacco protoplasts revealed by labelling with charged nanogold

    Get PDF
    Positively charged nanogold was used as a probe to trace the internalization of plasma membrane (PM) domains carrying negatively charged residues at an ultrastructural level. The probe revealed distinct endocytic pathways within tobacco protoplasts and allowed the morphology of the organelles involved in endocytosis to be characterized in great detail. Putative early endosomes with a tubulo-vesicular structure, similar to that observed in animal cells, are described and a new compartment, characterized by interconnected vesicles, was identified as a late endosome using the Arabidopsis anti-syntaxin family Syp-21 antibody. Endocytosis dissection using Brefeldin A (BFA), pulse chase, temperature- and energy-dependent experiments combined with quantitative analysis of nanogold particles in different compartments, suggested that recycling to the PM predominated with respect to degradation. Further experiments using ikarugamycin (IKA), an inhibitor of clathrin-dependent endocytosis, and negatively charged nanogold confirmed that distinct endocytic pathways coexist in tobacco protoplasts

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    The Rocas Atoll, Brazil: a preliminary survey of the Crustacea and Polychaeta fauna

    No full text
    Volume: 65Start Page: 241End Page: 25

    High metastatic efficiency of human sarcoma cells in Rag2/gamma c double knockout mice provides a powerful test system for antimetastatic targeted therapy

    No full text
    Immunodeficient animal models are invaluable tools to investigate the metastatic propensity of human tumours. However residual immune responses, in particular natural killer (NK) cells, severely hamper the traffic and growth of human tumour cells. We studied whether a genetically modified mouse host lacking T, B and NK immunity allowed an improved expression of the metastatic phenotype of malignant human tumours. Metastatic spread of a panel of human sarcoma cell lines was studied in double knockout Rag2\u2013/\u2013;\u3b3c\u2013/\u2013 mice in comparison with NK-depleted nude mice. Rag2\u2013/\u2013;\u3b3c\u2013/\u2013 mice receiving intravenous (i.v.) or subcutaneous (s.c.) human sarcoma cell lines developed extensive multiorgan metastases. Metastatic efficiency in Rag2\u2013/\u2013;\u3b3c\u2013/\u2013 was superior than in nude mice in terms of both metastatic sites and metastasis number. Metastatic growth in Rag2\u2013/\u2013;\u3b3c\u2013/\u2013 mice was faster than that in nude mice, thus allowing an earlier metastasis evaluation. Most human sarcomas metastasised in the liver of Rag2\u2013/\u2013;\u3b3c\u2013/\u2013 mice, a kind of organ preference undetectable in nude mice and specific of sarcomas, as several carcinoma cell lines failed to colonise the liver of Rag2\u2013/\u2013;\u3b3c\u2013/\u2013 mice, independently of their metastatic spread to other sites. In vitro analysis of the molecular mechanisms of liver metastasis of sarcomas implicated liver-produced growth and motility factors, in particular the insulin-like growth factor (IGF) axis. NVP-BEZ235, a specific inhibitor of downstream signal transduction targeting PI3K and mTOR, strongly inhibited liver metastasis of human sarcoma cells. In conclusion, the Rag2\u2013/\u2013;\u3b3c\u2013/\u2013 mouse model allowed the expression of human metastatic phenotypes inapparent in conventional immunodeficient mice and the preclinical testing of appropriate targeted therapies
    corecore