30 research outputs found

    Temporally resolved second-order photon correlations of exciton-polariton Bose-Einstein condensate formation

    Get PDF
    Second-order time correlation measurements with a temporal resolution better than 3 ps were performed on a CdTe microcavity where spontaneous Bose-Einstein condensation is observed. After the laser pulse, the nonresonantly excited thermal polariton population relaxes into a coherent polariton condensate. Photon statistics of the light emitted by the microcavity evidences a clear phase transition from the thermal state to a coherent state, which occurs within 3.2 ps after the onset of stimulated scattering. Following this very fast transition, we show that the emission possesses a very high coherence that persists for more than 100 ps after the build-up of the condensate.Comment: 4 pages, 3 figure

    Systematic characterization of human gut microbiome-secreted molecules by integrated multi-omics

    Get PDF
    The human gut microbiome produces a complex mixture of biomolecules that interact with human physiology and play essential roles in health and disease. Crosstalk between micro-organisms and host cells is enabled by different direct contacts, but also by the export of molecules through secretion systems and extracellular vesicles. The resulting molecular network, comprised of various biomolecular moieties, has so far eluded systematic study. Here we present a methodological framework, optimized for the extraction of the microbiome-derived, extracellular biomolecular complement, including nucleic acids, (poly)peptides, and metabolites, from flash-frozen stool samples of healthy human individuals. Our method allows simultaneous isolation of individual biomolecular fractions from the same original stool sample, followed by specialized omic analyses. The resulting multi-omics data enable coherent data integration for the systematic characterization of this molecular complex. Our results demonstrate the distinctiveness of the different extracellular biomolecular fractions, both in terms of their taxonomic and functional composition. This highlights the challenge of inferring the extracellular biomolecular complement of the gut microbiome based on single-omic data. The developed methodological framework provides the foundation for systematically investigating mechanistic links between microbiome-secreted molecules, including those that are typically vesicle-associated, and their impact on host physiology in health and disease

    Fiber deprivation and microbiome-borne curli shift gut bacterial populations and accelerate disease in a mouse model of Parkinson's disease.

    Get PDF
    peer reviewedParkinson's disease (PD) is a neurological disorder characterized by motor dysfunction, dopaminergic neuron loss, and alpha-synuclein (αSyn) inclusions. Many PD risk factors are known, but those affecting disease progression are not. Lifestyle and microbial dysbiosis are candidates in this context. Diet-driven gut dysbiosis and reduced barrier function may increase exposure of enteric neurons to toxins. Here, we study whether fiber deprivation and exposure to bacterial curli, a protein cross-seeding with αSyn, individually or together, exacerbate disease in the enteric and central nervous systems of a transgenic PD mouse model. We analyze the gut microbiome, motor behavior, and gastrointestinal and brain pathologies. We find that diet and bacterial curli alter the microbiome and exacerbate motor performance, as well as intestinal and brain pathologies, but to different extents. Our results shed important insights on how diet and microbiome-borne insults modulate PD progression via the gut-brain axis and have implications for lifestyle management of PD.Deciphering the impact of exposures from the gut microbiome-derived molecular complex in human health and diseas

    Comparing Notes: Recording and Criticism

    Get PDF
    This chapter charts the ways in which recording has changed the nature of music criticism. It both provides an overview of the history of recording and music criticism, from the advent of Edison’s Phonograph to the present day, and examines the issues arising from this new technology and the consequent transformation of critical thought and practice

    Wider Still and Wider: British Music Criticism since the Second World War

    Get PDF
    This chapter provides the first historical examination of music criticism in Britain since the Second World War. In the process, it also challenges the simplistic prevailing view of this being a period of decline from a golden age in music criticism

    Stop the Press? The Changing Media of Music Criticism

    Get PDF

    Self-Complementary Phosphonate Cavitands

    No full text
    International audienceiii-Phosphorylated cavitands incorporating an N-methylpyridinium guest moiety as the fourth bridging unit form supramolecular associations by inclusion of the charged CH3N+-pyridinium head into a neighboring host cavity. The dimeric association is favored in solution and was characterized by NMR, mass spectrometry, DOSY experiments, and single crystal X-ray analysis

    Mode-field switching of nanolasers

    No full text
    Due to their small sizes and low threshold, nanolasers play a pivotal role in the field of low-energy scalable photonic technologies. High-speed modulation of nanolasers is needed for their application in data communication, but its implementation has been hampered by the small scales involved, leading to large electrical parasitics. Here we experimentally demonstrate the proof-of-principle of a novel modulation technique, namely, mode-field switching, which unlocks the control of the laser operation via the modulation of the electromagnetic field. In particular, we show that stimulated emission can be inhibited by switching the lasing mode from bright to dark in a three-coupled cavity system. The experimental results are in good agreement with a model that combines coupled-mode theory and rate equations. Using this model, we show that time-dependent detuning schemes enable storage and release of energy under the form of short pulses, placing mode-field switching among the techniques for laser modulation and pulse generation. This scheme is general and can be implemented in every platform displaying coupled and tuneable resonances

    Revised role for Hfq bacterial regulator on DNA topology

    Get PDF
    Abstract Hfq is a pleiotropic regulator that mediates several aspects of bacterial RNA metabolism. The protein notably regulates translation efficiency and RNA decay in Gram-negative bacteria, usually via its interaction with small regulatory RNA. Besides these RNA-related functions, Hfq has also been described as one of the nucleoid associated proteins shaping the bacterial chromosome. Therefore, Hfq appears as a versatile nucleic acid-binding protein, which functions are probably even more numerous than those initially suggested. For instance, E. coli Hfq, and more precisely its C-terminal region (CTR), has been shown to induce DNA compaction into a condensed form. In this paper, we establish that DNA induces Hfq-CTR amyloidogenesis, resulting in a change of DNA local conformation. Furthermore, we clarify the effect of Hfq on DNA topology. Our results evidence that, even if the protein has a strong propensity to compact DNA thanks to its amyloid region, it does not affect overall DNA topology. We confirm however that hfq gene disruption influences plasmid supercoiling in vivo, indicating that the effect on DNA topology in former reports was indirect. Most likely, this effect is related to small regulatory sRNA-Hfq-based regulation of another protein that influences DNA supercoiling, possibly a nucleoid associated protein such as H-NS or Dps. Finally, we hypothesise that this indirect effect on DNA topology explains, at least partially, the previously reported effect of Hfq on plasmid replication efficiency
    corecore