234 research outputs found

    Ligand design and preparation, photophysical properties, and device performance of an encapsulated-type pseudo-tris(heteroleptic) iridium(iii) emitter

    Get PDF
    The organic molecule 2-(1-phenyl-1-(pyridin-2-yl)ethyl)-6-(3-(1-phenyl-1-(pyridin-2-yl)ethyl)phenyl)pyridine (H3L) has been designed, prepared, and employed to synthesize the encapsulated-type pseudo-tris(heteroleptic) iridium(III) derivative Ir(Îș6-fac-C,Câ€Č,C″-fac-N,Nâ€Č,N″-L). Its formation takes place as a result of the coordination of the heterocycles to the iridium center and the ortho-CH bond activation of the phenyl groups. Dimer [Ir(ÎŒ-Cl)(η4-COD)]2 is suitable for the preparation of this compound of class [Ir(9h)] (9h = 9-electron donor hexadentate ligand), but Ir(acac)3 is a more appropriate starting material. Reactions were carried out in 1-phenylethanol. In contrast to the latter, 2-ethoxyethanol promotes the metal carbonylation, inhibiting the full coordination of H3L. Complex Ir(Îș6-fac-C,Câ€Č,C″-fac-N,Nâ€Č,N″-L) is a phosphorescent emitter upon photoexcitation, which has been employed to fabricate four yellow emitting devices with 1931 CIE (x:y) ∌ (0.52:0.48) and a maximum wavelength at 576 nm. These devices display luminous efficacies, external quantum efficiencies, and power efficacies at 600 cd m–2, which lie in the ranges 21.4–31.3 cd A–1, 7.8–11.3%, and 10.2–14.1 lm W1–, respectively, depending on the device configuration

    <i>Gaia</i> Data Release 1. Summary of the astrometric, photometric, and survey properties

    Get PDF
    Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. Aims. A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. Methods. The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. Results. Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the HIPPARCOS and Tycho-2 catalogues – a realisation of the Tycho-Gaia Astrometric Solution (TGAS) – and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of ∌3000 Cepheid and RR-Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr−1 for the proper motions. A systematic component of ∌0.3 mas should be added to the parallax uncertainties. For the subset of ∌94 000 HIPPARCOS stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr−1. For the secondary astrometric data set, the typical uncertainty of the positions is ∌10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to ∌0.03 mag over the magnitude range 5 to 20.7. Conclusions. Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data

    Characterization of dust aggregates in the vicinity of the Rosetta spacecraft

    Get PDF
    In a Rosetta/OSIRIS imaging activity in 2015 June, we have observed the dynamic motion of particles close to the spacecraft. Due to the focal setting of the OSIRIS wide angle camera, these particles were blurred, which can be used to measure their distances to the spacecraft. We detected 109 dust aggregates over a 130 min long sequence, and find that their sizes are around a millimetre and their distances cluster between 2 and 40 m from the spacecraft. Their number densities are about a factor 10 higher than expected for the overall coma and highly fluctuating. Their velocities are small compared to the spacecraft orbital motion and directed away from the spacecraft, towards the comet. From this we conclude that they have interacted with the spacecraft and assess three possible scenarios. In the likeliest of the three scenarios, centimetre-sized aggregates collide with the spacecraft and we would observe the fragments. Ablation of a dust layer on the spacecraft's z panel (remote instrument viewing direction) when rotated towards the Sun is a reasonable alternative. We could also measure an acceleration for a subset of 18 aggregates, which is directed away from the Sun and can be explain by a rocket effect, which requires a minimum ice fraction of the order of 0.1 per cent

    Tensile strength of 67P/Churyumov-Gerasimenko nucleus material from overhangs

    Get PDF
    We directly measured twenty overhanging cliffs on the surface of comet 67P/Churyumov-Gerasimenko extracted from the latest shape model and estimated the minimum tensile strengths needed to support them against collapse under the comet's gravity. We find extremely low strengths of around 1 Pa or less (1 to 5 Pa, when scaled to a metre length). The presence of eroded material at the base of most overhangs, as well as the observed collapse of two features and the implied previous collapse of another, suggests that they are prone to failure and that the true material strengths are close to these lower limits (although we only consider static stresses and not dynamic stress from, for example, cometary activity). Thus, a tensile strength of a few pascals is a good approximation for the tensile strength of the 67P nucleus material, which is in agreement with previous work. We find no particular trends in overhang properties either with size over the ~10-100 m range studied here or location on the nucleus. There are no obvious differences, in terms of strength, height or evidence of collapse, between the populations of overhangs on the two cometary lobes, suggesting that 67P is relatively homogenous in terms of tensile strength. Low material strengths are supportive of cometary formation as a primordial rubble pile or by collisional fragmentation of a small body (tens of km)

    Gravitational slopes, geomorphology, and material strengths of the nucleus of comet 67P/Churyumov-Gerasimenko from OSIRIS observations

    Get PDF
    We study the link between gravitational slopes and the surface morphology on the nucleus of comet 67P/Churyumov-Gerasimenko and provide constraints on the mechanical properties of the cometary material (tensile, shear, and compressive strengths). Methods. We computed the gravitational slopes for five regions on the nucleus that are representative of the different morphologies observed on the surface (Imhotep, Ash, Seth, Hathor, and Agilkia), using two shape models computed from OSIRIS images by the stereo-photoclinometry (SPC) and stereo-photogrammetry (SPG) techniques. We estimated the tensile, shear, and compressive strengths using different surface morphologies (overhangs, collapsed structures, boulders, cliffs, and Philae's footprint) and mechanical considerations. Results. The different regions show a similar general pattern in terms of the relation between gravitational slopes and terrain morphology: i) low-slope terrains (0-20°) are covered by a fine material and contain a few large (&gt;10 m) and isolated boulders; ii) intermediate-slope terrains (20-45°) are mainly fallen consolidated materials and debris fields, with numerous intermediate-size boulders from &lt;1 m to 10 m for the majority of them; and iii) high-slope terrains (45-90°) are cliffs that expose a consolidated material and do not show boulders or fine materials. The best range for the tensile strength of overhangs is 3-15 Pa (upper limit of 150 Pa), 4-30 Pa for the shear strength of fine surface materials and boulders, and 30-150 Pa for the compressive strength of overhangs (upper limit of 1500 Pa). The strength-to-gravity ratio is similar for 67P and weak rocks on Earth. As a result of the low compressive strength, the interior of the nucleus may have been compressed sufficiently to initiate diagenesis, which could have contributed to the formation of layers. Our value for the tensile strength is comparable to that of dust aggregates formed by gravitational instability and tends to favor a formation of comets by the accrection of pebbles at low velocities

    OSIRIS observations of meter-sized exposures of H2O ice at the surface of 67P/Churyumov-Gerasimenko and interpretation using laboratory experiments

    Get PDF
    Since OSIRIS started acquiring high-resolution observations of the surface of the nucleus of comet 67P/Churyumov-Gerasimenko, over one hundred meter-sized bright spots have been identified in numerous types of geomorphologic regions, but mostly located in areas receiving low insolation. The bright spots are either clustered, in debris fields close to decameter-high cliffs, or isolated without structural relation to the surrounding terrain. They can be up to ten times brighter than the average surface of the comet at visible wavelengths and display a significantly bluer spectrum. They do not exhibit significant changes over a period of a few weeks. All these observations are consistent with exposure of water ice at the surface of boulders produced by dislocation of the weakly consolidated layers that cover large areas of the nucleus. Laboratory experiments show that under simulated comet surface conditions, analog samples acquire a vertical stratification with an uppermost porous mantle of refractory dust overlaying a layer of hard ice formed by recondensation or sintering under the insulating dust mantle. The evolution of the visible spectrophotometric properties of samples during sublimation is consistent with the contrasts of brightness and color seen at the surface of the nucleus. Clustered bright spots are formed by the collapse of overhangs that is triggered by mass wasting of deeper layers. Isolated spots might be the result of the emission of boulders at low velocity that are redepositioned in other regions

    Dust mass distribution around comet 67P/Churyumov-Gerasimenko determined via parallax measurements using Rosetta's OSIRIS cameras

    Get PDF
    The OSIRIS (optical, spectroscopic and infrared remote imaging system) instrument on board the ESA Rosetta spacecraft collected data of 67P/Churyumov-Gerasimenko for over 2 yr. OSIRIS consists of two cameras, a Narrow Angle Camera and a Wide Angle Camera. For specific imaging sequences related to the observation of dust aggregates in 67P's coma, the two cameras were operating simultaneously. The two cameras are mounted 0.7 m apart from each other, as a result this baseline yields a parallax shift of the apparent particle trails on the analysed images directly proportional to their distance. Thanks to such shifts, the distance between observed dust aggregates and the spacecraft was determined. This method works for particles closer than 6000 m to the spacecraft and requires very few assumptions. We found over 250 particles in a suitable distance range with sizes of some centimetres, masses in the range of 10-6-102 kg and a mean velocity of about 2.4 m s-1 relative to the nucleus. Furthermore, the spectral slope was analysed showing a decrease in the median spectral slope of the particles with time. The further a particle is from the spacecraft the fainter is its signal. For this reason, this was counterbalanced by a debiasing. Moreover, the dust mass-loss rate of the nucleus could be computed as well as the Af ρ of the comet around perihelion. The summed-up dust mass-loss rate for the mass bins 10-4-102 kg is almost 8300 kg s-1

    Gaia Data Release 1: Open cluster astrometry: performance, limitations, and future prospects

    Get PDF
    Context. The first Gaia Data Release contains the Tycho-Gaia Astrometric Solution (TGAS). This is a subset of about 2 million stars for which, besides the position and photometry, the proper motion and parallax are calculated using Hipparcos and Tycho-2 positions in 1991.25 as prior information.Aims. We investigate the scientific potential and limitations of the TGAS component by means of the astrometric data for open clusters.Methods. Mean cluster parallax and proper motion values are derived taking into account the error correlations within the astrometric solutions for individual stars, an estimate of the internal velocity dispersion in the cluster, and, where relevant, the effects of the depth of the cluster along the line of sight. Internal consistency of the TGAS data is assessed.Results. Values given for standard uncertainties are still inaccurate and may lead to unrealistic unit-weight standard deviations of least squares solutions for cluster parameters. Reconstructed mean cluster parallax and proper motion values are generally in very good agreement with earlier HIPPARCOS-based determination, although the Gaia mean parallax for the Pleiades is a significant exception. We have no current explanation for that discrepancy. Most clusters are observed to extend to nearly 15 pc from the cluster centre, and it will be up to future Gaia releases to establish whether those potential cluster-member stars are still dynamically bound to the clusters.Conclusions. The Gaia DR1 provides the means to examine open clusters far beyond their more easily visible cores, and can provide membership assessments based on proper motions and parallaxes. A combined HR diagram shows the same features as observed before using the HIPPARCOS data, with clearly increased luminosities for older A and F dwarfs

    Examining the Relationship Between Genetic Counselors’ Attitudes Toward Deaf People and the Genetic Counseling Session

    Get PDF
    Given the medical and cultural perspectives on deafness it is important to determine if genetic counselors’ attitudes toward deaf people can affect counseling sessions for deafness genes. One hundred fifty-eight genetic counselors recruited through the National Society of Genetic Counselors Listserv completed an online survey assessing attitudes toward deaf people and scenario-specific comfort levels discussing and offering genetic testing for deafness. Respondents with deaf/Deaf friends or who work in prenatal or pediatric settings had more positive attitudes toward deaf people than those without deaf/Deaf friends or those working in ‘other’ settings. More positive attitudes toward deaf people correlated with higher comfort level talking about genetic testing for the two scenarios involving culturally Deaf clients; and correlated with higher comfort level offering genetic testing to culturally Deaf clients wishing to have a deaf child. Attitudes and comfort level were not correlated in the scenarios involving hearing or non-culturally deaf clients. These results suggest that genetic counselors’ attitudes could affect information provision and the decision making process of culturally Deaf clients. Cultural sensitivity workshops in genetic counseling training programs that incorporate personal interactions with culturally Deaf individuals are recommended. Additional suggestions for fostering personal interactions are provided

    Gaia Data Release 1: Testing parallaxes with local Cepheids and RR Lyrae stars

    Get PDF
    Context. Parallaxes for 331 classical Cepheids, 31 Type II Cepheids, and 364 RR Lyrae stars in common between Gaia and the Hipparcos and Tycho-2 catalogues are published in Gaia Data Release 1 (DR1) as part of the Tycho-Gaia Astrometric Solution (TGAS). Aims. In order to test these first parallax measurements of the primary standard candles of the cosmological distance ladder, which involve astrometry collected by Gaia during the initial 14 months of science operation, we compared them with literature estimates and derived new period-luminosity (PL), period-Wesenheit (PW) relations for classical and Type II Cepheids and infrared PL, PL-metallicity (PLZ), and optical luminosity-metallicity (M V -[Fe/H]) relations for the RR Lyrae stars, with zero points based on TGAS. Methods. Classical Cepheids were carefully selected in order to discard known or suspected binary systems. The final sample comprises 102 fundamental mode pulsators with periods ranging from 1.68 to 51.66 days (of which 33 with σ Ω /Ω < 0.5). The Type II Cepheids include a total of 26 W Virginis and BL Herculis stars spanning the period range from 1.16 to 30.00 days (of which only 7 with σ Ω /Ω < 0.5). The RR Lyrae stars include 200 sources with pulsation period ranging from 0.27 to 0.80 days (of which 112 with σ Ω /Ω < 0.5). The new relations were computed using multi-band (V,I,J,K s ) photometry and spectroscopic metal abundances available in the literature, and by applying three alternative approaches: (i) linear least-squares fitting of the absolute magnitudes inferred from direct transformation of the TGAS parallaxes; (ii) adopting astrometry-based luminosities; and (iii) using a Bayesian fitting approach. The last two methods work in parallax space where parallaxes are used directly, thus maintaining symmetrical errors and allowing negative parallaxes to be used. The TGAS-based PL,PW,PLZ, and M V - [Fe/H] relations are discussed by comparing the distance to the Large Magellanic Cloud provided by different types of pulsating stars and alternative fitting methods. Results. Good agreement is found from direct comparison of the parallaxes of RR Lyrae stars for which both TGAS and HST measurements are available. Similarly, very good agreement is found between the TGAS values and the parallaxes inferred from the absolute magnitudes of Cepheids and RR Lyrae stars analysed with the Baade-Wesselink method. TGAS values also compare favourably with the parallaxes inferred by theoretical model fitting of the multi-band light curves for two of the three classical Cepheids and one RR Lyrae star, which were analysed with this technique in our samples. The K-band PL relations show the significant improvement of the TGAS parallaxes for Cepheids and RR Lyrae stars with respect to the Hipparcos measurements. This is particularly true for the RR Lyrae stars for which improvement in quality and statistics is impressive. Conclusions. TGAS parallaxes bring a significant added value to the previous Hipparcos estimates. The relations presented in this paper represent the first Gaia-calibrated relations and form a work-in-progress milestone report in the wait for Gaia-only parallaxes of which a first solution will become available with Gaia Data Release 2 (DR2) in 2018. © ESO, 2017
    • 

    corecore