36 research outputs found

    The Anesthetic Effects on Vasopressor Modulation of Cerebral Blood Flow in an Immature Swine Model

    Get PDF
    BACKGROUND: The effect of various sedatives and anesthetics on vasopressor modulation of cerebral blood flow (CBF) in children is unclear. In adults, isoflurane has been described to decrease CBF to a lesser extent than fentanyl and midazolam. Most large-animal models of neurocritical care use inhaled anesthetics for anesthesia. Investigations involving modulations of CBF would have improved translatability within a model that more closely approximates the current practice in the pediatric intensive care unit. METHODS: Fifteen 4-week-old piglets were given 1 of 2 anesthetic protocols: total IV anesthesia (TIVA) (midazolam 1 mg/kg/h and fentanyl 100 μg/kg/h, n = 8) or ISO (isoflurane 1.5%–2% and fentanyl 100 μg/kg/h, n = 7). Mean arterial blood pressure, intracranial pressure (ICP), CBF, and brain tissue oxygen tension were measured continuously as piglets were exposed to escalating doses of arginine vasopressin, norepinephrine (NE), and phenylephrine (PE). RESULTS: Baseline CBF was similar in the 2 groups (ISO 38 ± 10 vs TIVA 35 ± 26 mL/100 g/min) despite lower baseline cerebral perfusion pressure in the ISO group (45 ± 11 vs 71 ± 11 mm Hg; P \u3c 0.0005). Piglets in the ISO group displayed increases in ICP with PE and NE (11 ± 4 vs 16 ± 4 mm Hg and 11 ± 8 vs 18 ± 5 mm Hg; P \u3c 0.05), but in the TIVA group, only exposure to PE resulted in increases in ICP when comparing maximal dose values with baseline data (11 ± 4 vs 15 ± 5 mm Hg; P \u3c 0.05). Normalized CBF displayed statistically significant increases regarding anesthetic group and vasopressor dose when piglets were exposed to NE and PE (P \u3c 0.05), suggesting an impairment of autoregulation within ISO, but not TIVA. CONCLUSION: The vasopressor effect on CBF was limited when using a narcotic-benzodiazepine–based anesthetic protocol compared with volatile anesthetics, consistent with a preservation of autoregulation. Selection of anesthetic drugs is critical to investigate mechanisms of cerebrovascular hemodynamics, and in translating critical care investigations between the laboratory and bedside

    Differing effects when using phenylephrine and norepinephrine to augment cerebral blood flow after traumatic brain injury in the immature brain

    Get PDF
    Low cerebral blood flow (CBF) states have been demonstrated in children early after traumatic brain injury (TBI), and have been correlated with poorer outcomes. Cerebral perfusion pressure (CPP) support following severe TBI is commonly implemented to correct cerebral hypoperfusion, but the efficacy of various vasopressors has not been determined. Sixteen 4-week-old female swine underwent nonimpact inertial brain injury in the sagittal plane. Intraparenchymal monitors were placed to measure intracranial pressure (ICP), CBF, brain tissue oxygen tension (PbtO(2)), and cerebral microdialysis 30 min to 6 h post-injury. One hour after injury, animals were randomized to receive either phenylephrine (PE) or norepinephrine (NE) infusions titrated to a CPP >70 mm Hg for 5 h. Animals were euthanized 6 h post-TBI, and brains were fixed and stained to assess regions of cell and axonal injury. After initiation of CPP augmentation with NE or PE infusions, there were no differences in ICP between the groups or over time. Animals receiving NE had higher PbtO(2) than those receiving PE (29.6±10.2 vs. 19.6±6.4 torr at 6 h post-injury, p<0.05). CBF increased similarly in both the NE and PE groups. CPP support with PE resulted in a greater reduction in metabolic crisis than with NE (lactate/pyruvate ratio 16.7±2.4 vs. 42.7±10.2 at 6 h post-injury, p<0.05). Augmentation of CPP to 70 mm Hg with PE resulted in significantly smaller cell injury volumes at 6 h post-injury than CPP support with NE (0.4% vs. 1.4%, p<0.05). Despite similar increases in CBF, CPP support with NE resulted in greater brain tissue oxygenation and hypoxic-ischemic injury than CPP support with PE. Future clinical studies comparing the effectiveness of various vasopressors for CPP support are warranted

    Post-operative atrial fibrillation: a maze of mechanisms

    Get PDF
    Post-operative atrial fibrillation (POAF) is one of the most frequent complications of cardiac surgery and an important predictor of patient morbidity as well as of prolonged hospitalization. It significantly increases costs for hospitalization. Insights into the pathophysiological factors causing POAF have been provided by both experimental and clinical investigations and show that POAF is ‘multi-factorial’. Facilitating factors in the mechanism of the arrhythmia can be classified as acute factors caused by the surgical intervention and chronic factors related to structural heart disease and ageing of the heart. Furthermore, some proarrhythmic mechanisms specifically occur in the setting of POAF. For example, inflammation and beta-adrenergic activation have been shown to play a prominent role in POAF, while these mechanisms are less important in non-surgical AF. More recently, it has been shown that atrial fibrosis and the presence of an electrophysiological substrate capable of maintaining AF also promote the arrhythmia, indicating that POAF has some proarrhythmic mechanisms in common with other forms of AF. The clinical setting of POAF offers numerous opportunities to study its mechanisms. During cardiac surgery, biopsies can be taken and detailed electrophysiological measurements can be performed. Furthermore, the specific time course of POAF, with the delayed onset and the transient character of the arrhythmia, also provides important insight into its mechanisms

    Advances in Electronic-Nose Technologies Developed for Biomedical Applications

    Get PDF
    The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and recent biomedical research findings and developments of electronic-nose sensor technologies, and to identify current and future potential e-nose applications that will continue to advance the effectiveness and efficiency of biomedical treatments and healthcare services for many years. An abundance of electronic-nose applications has been developed for a variety of healthcare sectors including diagnostics, immunology, pathology, patient recovery, pharmacology, physical therapy, physiology, preventative medicine, remote healthcare, and wound and graft healing. Specific biomedical e-nose applications range from uses in biochemical testing, blood-compatibility evaluations, disease diagnoses, and drug delivery to monitoring of metabolic levels, organ dysfunctions, and patient conditions through telemedicine. This paper summarizes the major electronic-nose technologies developed for healthcare and biomedical applications since the late 1980s when electronic aroma detection technologies were first recognized to be potentially useful in providing effective solutions to problems in the healthcare industry

    Anesthetic Management for Laser Excision of Ball-Valving Laryngeal Masses

    Get PDF
    A 47-year-old obese woman with GERD and COPD presents for CO2-laser excision of bilateral vocal fold masses. She had a history of progressive hoarseness and difficulty in breathing. Nasopharyngeal laryngoscopy revealed large, mobile, bilateral vocal cord polyps that demonstrated dynamic occlusion of the glottis. We describe the airway and anesthetic management of this patient with a topicalized C-MAC video laryngoscopic intubation using a 4.5 mm Xomed Laser Shield II endotracheal tube. We examine the challenges of anesthetic management unique to the combined circumstances of a ball-valve lesion and the need for a narrow-bore laser compatible endotracheal tube
    corecore