54 research outputs found

    Dasyophthalma (Lepidoptera: Nymphalidae: Satyrinae): systematics, distribution, and conservation perspectives of a butterfly genus endemic from the Brazilian Atlantic Forest

    Get PDF
    Dasyophthalma includes five species of medium-sized butterflies, all endemic from the Atlantic Forest of Brazil. All known species are univoltine and are dayflying, differently from other Brassolini that are mostly crepuscular. In despite of recent advances little is known about their natural history. Three out of the five species are included in the Brazilian Red List of threatened fauna and are of conservation concern. The present study provides for the first time a phylogenetic assessment of all Dasyophthalma species based on a molecular approach based on three loci. Also, the taxonomic status of D. rusina delanira was revised based on molecular data. In addition, up-to-date distributional data and conservation aspects of the threatened species from the genus are presented and discussed. The molecular phylogenetic analysis supports the monophyly of Dasyophthalma, with Dynastor darius as its sister-group, and, combined with a genetic divergence analysis, supported Dasyophthalma delanira stat. rest. as a valid name to species-level, sister-group to D. geraensis (and not a subspecies of D. rusina). The geographical range (extent of occurrence and area of occupancy) for all five species are presented, showing that these are very restricted for D. delanira stat. rest. and D. geraensis, following the distributions of the high-altitude forests. As much biological information about the genus is lacking, the present study can serve as a starting point for future studies on Dasyophthalma, adding information that can be crucial for future conservation actions and essential to assure the future of the threatened species in this genus

    Silagem ácida e biológica de resíduos de peixes produzidos na Amazônia ocidental – Acre / Acid and biological silage of fish residues produced in the western Amazon - Acre

    Get PDF
    Existem uma grande quantidade de resíduos gerados pelas indústrias beneficiadoras de pescado, sendo o seu descarte um grande problema de poluição ambiental. Uma alternativa é transformar esses resíduos em silagem, possibilitando a bioconversão do material, trazendo vantagens econômicas para a indústria, além de permitir o manejo do resíduo. O estudo teve por objetivo elaborar e avaliar o valor nutritivo das silagens ácida e biológica de resíduos de Pintado e Pirapitinga, as silagens foram preparadas mediante a moagem dos resíduos e adicionados 10% de ácido acético para silagem ácida, e 6% de iogurte natural e 10% de açúcar comercial para biológica. Foram armazenadas em baldes em temperatura ambiente durante 45 dias. O pH e temperatura foram monitorados em dias intercalados. Foram realizadas análises microbiológicas para fungos e leveduras, microrganismos mesófilos totais e coliformes totais a 35°C. Os dados foram submetidos à análise de variância e comparadas pelo teste de Tukey a nível de 5% de probabilidade. As silagens ácidas apresentaram os menores níveis de pH em média de 3,96 (Pintado) e 3,71 (Pirapitinga). Nas análises microbiológicas observou a ausência de coliformes totais a 35°C, fungos e leveduras, microrganismos mesofilos totais. As análises revelaram diferenças significativas entre as silagens sendo os valores expressivos para proteína bruta na silagem biológica de Pintado (42,13%) e Pirapitinga (42,92%), e energia bruta na silagem biológica de Pintado (3907 Kcal/Kg) e Pirapitinga (3776 Kcal/Kg) e que evidenciaria de forma mais desejável a relação Proteína/Energia gerando um produto de qualidade com potencial para uma possível formulação de ração. 

    Hexapoda Yearbook (Arthropoda: Mandibulata: Pancrustacea) Brazil 2020: the first annual production survey of new Brazilian species

    Get PDF
    This paper provided a list of all new Brazilian Hexapoda species described in 2020. Furthermore, based on the information extracted by this list, we tackled additional questions regarding the taxa, the specialists involved in the species descriptions as well as the journals in which those papers have been published. We recorded a total of 680 new Brazilian species of Hexapoda described in 2020, classified in 245 genera, 112 families and 18 orders. These 680 species were published in a total of 219 articles comprising 423 different authors residing in 27 countries. Only 30% of these authors are women, which demonstrates an inequality regarding sexes. In relation to the number of authors by species, the majority of the new species had two authors and the maximum of authors by species was five. We also found inequalities in the production of described species regarding the regions of Brazil, with Southeast and South leading. The top 10 institutions regarding productions of new species have four in the Southeast, two at South and with one ate North Region being the outlier of this pattern. Out of the total 219 published articles, Zootaxa dominated with 322 described species in 95 articles. The average impact factor was of 1.4 with only seven articles being published in Impact Factors above 3, indicating a hardship on publishing taxonomic articles in high-impact journals.The highlight of this paper is that it is unprecedent, as no annual record of Hexapoda species described was ever made in previous years to Brazil.Fil: Silva Neto, Alberto Moreira. Ministério da Ciência, Tecnologia, Inovações. Instituto Nacional de Pesquisas da Amazônia; BrasilFil: Lopes Falaschi, Rafaela. Universidade Estadual do Ponta Grossa; BrasilFil: Zacca, Thamara. Universidade Federal Do Rio de Janeiro. Museu Nacional; BrasilFil: Hipólito, Juliana. Universidade Federal da Bahia; BrasilFil: Costa Lima Pequeno, Pedro Aurélio. Universidade Federal de Roraima; BrasilFil: Alves Oliveira, João Rafael. Ministério da Ciência, Tecnologia, Inovações. Instituto Nacional de Pesquisas da Amazônia; BrasilFil: Oliveira Dos Santos, Roberto. Ministério da Ciência, Tecnologia, Inovações. Instituto Nacional de Pesquisas da Amazônia; BrasilFil: Heleodoro, Raphael Aquino. Ministério da Ciência, Tecnologia, Inovações. Instituto Nacional de Pesquisas da Amazônia; BrasilFil: Jacobina, Adaiane Catarina Marcondes. Universidade Federal do Paraná; BrasilFil: Somavilla, Alexandre. Ministério da Ciência, Tecnologia, Inovações. Instituto Nacional de Pesquisas da Amazônia; BrasilFil: Camargo, Alexssandro. Ministério da Ciência, Tecnologia, Inovações. Instituto Nacional de Pesquisas da Amazônia; BrasilFil: de Oliveira Lira, Aline. Universidad Federal Rural Pernambuco; BrasilFil: Sampaio, Aline Amanda. Ministério da Ciência, Tecnologia, Inovações. Instituto Nacional de Pesquisas da Amazônia; BrasilFil: da Silva Ferreira, André. Universidad Federal Rural Pernambuco; BrasilFil: Martins, André Luis. Universidade Federal do Paraná; BrasilFil: Figueiredo de Oliveira, Andressa. Universidade Federal do Mato Grosso do Sul; BrasilFil: Gonçalves da Silva Wengrat , Ana Paula. Universidade do Sao Paulo. Escola Superior de Agricultura Luiz de Queiroz; BrasilFil: Batista Rosa, Augusto Henrique. Universidade Estadual de Campinas; BrasilFil: Dias Corrêa, Caio Cezar. Universidade Federal Do Rio de Janeiro. Museu Nacional; BrasilFil: Costa De-Souza, Caroline. Museu Paraense Emilio Goeldi; BrasilFil: Anjos Dos Santos, Danielle. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Centro de Investigación Esquel de Montaña y Estepa Patagónica. Universidad Nacional de la Patagonia "San Juan Bosco". Centro de Investigación Esquel de Montaña y Estepa Patagónica; ArgentinaFil: Pacheco Cordeiro, Danilo. Instituto Nacional Da Mata Atlantica; BrasilFil: Silva Nogueira, David. Ministério da Ciência, Tecnologia, Inovações. Instituto Nacional de Pesquisas da Amazônia; BrasilFil: Almeida Marques, Dayse Willkenia. Ministério da Ciência, Tecnologia, Inovações. Instituto Nacional de Pesquisas da Amazônia; BrasilFil: Nunes Barbosa, Diego. Universidade Federal do Paraná; BrasilFil: Mello Mendes, Diego Matheus. Instituto de Desenvolvimento Sustentável Mamirauá; BrasilFil: Galvão de Pádua, Diego. Ministério da Ciência, Tecnologia, Inovações. Instituto Nacional de Pesquisas da Amazônia; BrasilFil: Silva Vilela, Diogo. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Gomes Viegas, Eduarda Fernanda. Ministério da Ciência, Tecnologia, Inovações. Instituto Nacional de Pesquisas da Amazônia; BrasilFil: Carneiro dos Santos, Eduardo. Universidade Federal do Paraná; BrasilFil: Rodrigues Fernandes, Daniell Rodrigo. Ministério da Ciência, Tecnologia, Inovações. Instituto Nacional de Pesquisas da Amazônia; Brasi

    Caderno de pós-graduação em direito: novas tendências do direito ambiental

    Get PDF
    Pioneirismo sempre foi uma característica do UniCEUB; outra característica é a evolução permanente. A Instituição sempre acompanhou a evolução tecnológica e pedagógica do ensino. Isso se coaduna com a filosofia institucional que é a de preparar o homem integral por meio da busca do conhecimento e da verdade, assegurando-lhe a compreensão adequada de si mesmo e de sua responsabilidade social e profissional. Destarte, a missão institucional é a de gerar, sistematizar e disseminar o conhecimento visando à formação de cidadãos reflexivos e empreendedores, comprometidos com o desenvolvimento socioeconômico sustentável. E não poderia ser diferente. Com a expansão do conteúdo acadêmico que se transpassa do físico para o virtual, do local para o universal, do restrito para o difundido, isso porque o papel não é mais apenas uma substância constituída por elementos fibrosos de origem vegetal, os quais formam uma pasta que se faz secar sob a forma de folhas delgadas donde se cria, modifica, transforma letras em palavras; palavras em textos; textos em conhecimento, não! O papel se virtualiza, se desenvolve, agora, no infinito, rebuscado de informações. Assim, o UniCEUB acompanha essa evolução. É dessa forma que se desafia o leitor a compreender a atualidade, com a fonte que ora se entrega à leitura virtual, chamada de e-book. Isso é resultado do esforço permanente, da incorporação da ciência desenvolvida no ambiente acadêmico, cujo resultado desperta emoção, um sentimento de beleza de que o conteúdo científico representa o diferencial profissional. Portanto, convido-os a leitura desta obra, que reúne uma sucessão de artigos que são apresentados com grande presteza e maestria; com conteúdo forte e impactante; com sentimento e método, frutos da excelência acadêmicaOrganizadores: Gabriel R. Rozendo Pinto, Leandro Soares Nunes, Naiara Ferreira Martins, Paulo Victor Lima, Pedro Almeida Costa, Pietro Pimenta, Rodrigo Gonçalves Ramos de Oliveir

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Global variation in diabetes diagnosis and prevalence based on fasting glucose and hemoglobin A1c

    Get PDF
    Fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c) are both used to diagnose diabetes, but these measurements can identify different people as having diabetes. We used data from 117 population-based studies and quantified, in different world regions, the prevalence of diagnosed diabetes, and whether those who were previously undiagnosed and detected as having diabetes in survey screening, had elevated FPG, HbA1c or both. We developed prediction equations for estimating the probability that a person without previously diagnosed diabetes, and at a specific level of FPG, had elevated HbA1c, and vice versa. The age-standardized proportion of diabetes that was previously undiagnosed and detected in survey screening ranged from 30% in the high-income western region to 66% in south Asia. Among those with screen-detected diabetes with either test, the age-standardized proportion who had elevated levels of both FPG and HbA1c was 29-39% across regions; the remainder had discordant elevation of FPG or HbA1c. In most low- and middle-income regions, isolated elevated HbA1c was more common than isolated elevated FPG. In these regions, the use of FPG alone may delay diabetes diagnosis and underestimate diabetes prevalence. Our prediction equations help allocate finite resources for measuring HbA1c to reduce the global shortfall in diabetes diagnosis and surveillance

    Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants

    Get PDF
    Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks

    Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults

    Get PDF
    Background Underweight and obesity are associated with adverse health outcomes throughout the life course. We estimated the individual and combined prevalence of underweight or thinness and obesity, and their changes, from 1990 to 2022 for adults and school-aged children and adolescents in 200 countries and territories. Methods We used data from 3663 population-based studies with 222 million participants that measured height and weight in representative samples of the general population. We used a Bayesian hierarchical model to estimate trends in the prevalence of different BMI categories, separately for adults (age ≥20 years) and school-aged children and adolescents (age 5–19 years), from 1990 to 2022 for 200 countries and territories. For adults, we report the individual and combined prevalence of underweight (BMI <18·5 kg/m2) and obesity (BMI ≥30 kg/m2). For schoolaged children and adolescents, we report thinness (BMI <2 SD below the median of the WHO growth reference) and obesity (BMI >2 SD above the median). Findings From 1990 to 2022, the combined prevalence of underweight and obesity in adults decreased in 11 countries (6%) for women and 17 (9%) for men with a posterior probability of at least 0·80 that the observed changes were true decreases. The combined prevalence increased in 162 countries (81%) for women and 140 countries (70%) for men with a posterior probability of at least 0·80. In 2022, the combined prevalence of underweight and obesity was highest in island nations in the Caribbean and Polynesia and Micronesia, and countries in the Middle East and north Africa. Obesity prevalence was higher than underweight with posterior probability of at least 0·80 in 177 countries (89%) for women and 145 (73%) for men in 2022, whereas the converse was true in 16 countries (8%) for women, and 39 (20%) for men. From 1990 to 2022, the combined prevalence of thinness and obesity decreased among girls in five countries (3%) and among boys in 15 countries (8%) with a posterior probability of at least 0·80, and increased among girls in 140 countries (70%) and boys in 137 countries (69%) with a posterior probability of at least 0·80. The countries with highest combined prevalence of thinness and obesity in school-aged children and adolescents in 2022 were in Polynesia and Micronesia and the Caribbean for both sexes, and Chile and Qatar for boys. Combined prevalence was also high in some countries in south Asia, such as India and Pakistan, where thinness remained prevalent despite having declined. In 2022, obesity in school-aged children and adolescents was more prevalent than thinness with a posterior probability of at least 0·80 among girls in 133 countries (67%) and boys in 125 countries (63%), whereas the converse was true in 35 countries (18%) and 42 countries (21%), respectively. In almost all countries for both adults and school-aged children and adolescents, the increases in double burden were driven by increases in obesity, and decreases in double burden by declining underweight or thinness. Interpretation The combined burden of underweight and obesity has increased in most countries, driven by an increase in obesity, while underweight and thinness remain prevalent in south Asia and parts of Africa. A healthy nutrition transition that enhances access to nutritious foods is needed to address the remaining burden of underweight while curbing and reversing the increase in obesit

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
    corecore