103 research outputs found

    Aging, neurogenesis, and caloric restriction in different model organisms

    Get PDF
    Brain aging is a multifactorial process that is occurring across multiple cognitive domains. A significant complaint that occurs in the elderly is a decrement in learning and memory ability. Both rodents and zebrafish exhibit a similar problem with memory during aging. The neurobiological changes that underlie this cognitive decline are complex and undoubtedly influenced by many factors. Alterations in the birth of new neurons and neuron turnover may contribute to age-related cognitive problems. Caloric restriction is the only non-genetic intervention that reliably increases life span and healthspan across multiple organisms although the molecular mechanisms are not well-understood. Recently the zebrafish has become a popular model organism for understanding the neurobiological consequences but to date very little work has been performed. Similarly, few studies have examined the effects of dietary restriction in zebrafish. Here we review the literature related to memory decline, neurogenesis, and caloric restriction across model organisms and suggest that zebrafish has the potential to be an important animal model for understanding the complex interactions between age, neurobiological changes in the brain, and dietary regimens or their mimetics as interventions

    Cell elongation in the grass pulvinus in response to geotropic stimulation and auxin application

    Full text link
    Horizontally-placed segments of Avena sativa L. shoots show a negative geotropic response after a period of 30 min. This response is based on cell elongation on the lower side of the leaf-sheath base (pulvinus). Triticum aestivum L., Hordeum vulgare L. and Secale cereale L. also show geotropic responses that are similar to those in Avena shoots. The pulvinus is a highly specialized organ with radial symmetry and is made up of epidermal, vascular, parenchymatous and collenchymatous tissues. Statoliths, which are confined to parenchyma cells around the vascular bundles, sediment towards the gravitational field within 10–15 min of geotropic stimulation. Collenchymatous cells occur as prominent bundle caps, and in Avena , they occupy about 30% of the volume of the pulvinus. Geotropic stimulation causes a 3- to 5-fold increase in the length of the cells on the side nearest to the center of the gravitational field. Growth can also be initiated in vertically-held pulvini by the application of indole-3-acetic acid, 1-naphthaleneacetic acid or 2.4-dichlorophenoxyacetic acid. 2.3.5.-triiodobenzoic acid interferes with growth response produced by geotropic stimulation as well as with the response caused by auxin application. Gibberellic acid and kinetin have no visible effect on the growth of the pulvinus. Polarization microscopy shows a unique, non-uniform stretching of the elongating collenchymatous cells. Nonelongated collenchymatous cells appear uniformally anisotropic. After geotropic stimulation or auxin application, they appear alternately anisotropic and almost isotropic. Such a pattern of cell elongation is also observed in collenchyma cells of geotropically-stimulated shoots of Rumex acetosa L., a dicotyledon.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47463/1/425_2004_Article_BF00385422.pd

    The performance of the jet trigger for the ATLAS detector during 2011 data taking

    Get PDF
    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    Measurement of the cross section of high transverse momentum Z→bb̄ production in proton–proton collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    This Letter reports the observation of a high transverse momentum Z→bb̄ signal in proton–proton collisions at √s=8 TeV and the measurement of its production cross section. The data analysed were collected in 2012 with the ATLAS detector at the LHC and correspond to an integrated luminosity of 19.5 fb−¹. The Z→bb̄ decay is reconstructed from a pair of b -tagged jets, clustered with the anti-ktkt jet algorithm with R=0.4R=0.4, that have low angular separation and form a dijet with pT>200 GeVpT>200 GeV. The signal yield is extracted from a fit to the dijet invariant mass distribution, with the dominant, multi-jet background mass shape estimated by employing a fully data-driven technique that reduces the dependence of the analysis on simulation. The fiducial cross section is determined to be σZ→bb¯fid=2.02±0.20 (stat.) ±0.25 (syst.)±0.06 (lumi.) pb=2.02±0.33 pb, in good agreement with next-to-leading-order theoretical predictions

    Measurement of the branching ratio Γ(Λb⁰ → ψ(2S)Λ0)/Γ(Λb⁰ → J/ψΛ0) with the ATLAS detector

    Get PDF
    An observation of the Λb0ψ(2S)Λ0\Lambda_b^0 \rightarrow \psi(2S) \Lambda^0 decay and a comparison of its branching fraction with that of the Λb0J/ψΛ0\Lambda_b^0 \rightarrow J/\psi \Lambda^0 decay has been made with the ATLAS detector in proton--proton collisions at s=8\sqrt{s}=8\,TeV at the LHC using an integrated luminosity of 20.620.6\,fb1^{-1}. The J/ψJ/\psi and ψ(2S)\psi(2S) mesons are reconstructed in their decays to a muon pair, while the Λ0pπ\Lambda^0\rightarrow p\pi^- decay is exploited for the Λ0\Lambda^0 baryon reconstruction. The Λb0\Lambda_b^0 baryons are reconstructed with transverse momentum pT>10p_{\rm T}>10\,GeV and pseudorapidity η<2.1|\eta|<2.1. The measured branching ratio of the Λb0ψ(2S)Λ0\Lambda_b^0 \rightarrow \psi(2S) \Lambda^0 and Λb0J/ψΛ0\Lambda_b^0 \rightarrow J/\psi \Lambda^0 decays is Γ(Λb0ψ(2S)Λ0)/Γ(Λb0J/ψΛ0)=0.501±0.033(stat)±0.019(syst)\Gamma(\Lambda_b^0 \rightarrow \psi(2S)\Lambda^0)/\Gamma(\Lambda_b^0 \rightarrow J/\psi\Lambda^0) = 0.501\pm 0.033 ({\rm stat})\pm 0.019({\rm syst}), lower than the expectation from the covariant quark model.Comment: 12 pages plus author list (28 pages total), 5 figures, 1 table, published on Physics Letters B 751 (2015) 63-80. All figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/BPHY-2013-08

    Measurement of the View the tt production cross-section using eμ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σtt¯) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σtt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σtt¯ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance

    Search for strong gravity in multijet final states produced in pp collisions at √s=13 TeV using the ATLAS detector at the LHC

    Get PDF
    A search is conducted for new physics in multijet final states using 3.6 inverse femtobarns of data from proton-proton collisions at √s = 13TeV taken at the CERN Large Hadron Collider with the ATLAS detector. Events are selected containing at least three jets with scalar sum of jet transverse momenta (HT) greater than 1TeV. No excess is seen at large HT and limits are presented on new physics: models which produce final states containing at least three jets and having cross sections larger than 1.6 fb with HT > 5.8 TeV are excluded. Limits are also given in terms of new physics models of strong gravity that hypothesize additional space-time dimensions

    Operation and performance of the ATLAS semiconductor tracker

    Get PDF
    The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74±0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, δ-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations
    corecore