6 research outputs found

    Cortical Output Is Gated by Horizontally Projecting Neurons in the Deep Layers

    Get PDF
    Pyramidal tract neurons (PTs) represent the major output cell type of the mammalian neocortex. Here, we report the origins of the PTs’ ability to respond to a broad range of stimuli with onset latencies that rival or even precede those of their intracortical input neurons. We find that neurons with extensive horizontally projecting axons cluster around the deep-layer terminal fields of primary thalamocortical axons. The strategic location of these corticocortical neurons results in high convergence of thalamocortical inputs, which drive reliable sensory-evoked responses that precede those in other excitatory cell types. The resultant fast and horizontal stream of excitation provides PTs throughout the cortical area with input that acts to amplify additional inputs from thalamocortical and other intracortical populations. The fast onsets and broadly tuned characteristics of PT responses hence reflect a gating mechanism in the deep layers, which assures that sensory-evoked input can be reliably transformed into cortical output

    High-frequency burst spiking in layer 5 thick-tufted pyramids of rat primary somatosensory cortex encodes exploratory touch

    Get PDF
    In order to investigate the information encoded by spiking activity in different neuronal cell types in the primary somatosensory cortex, de Kock et al performed electrophysiological recordings in untrained rats. They demonstrated that an increase in high-frequency burst spiking in thick tufted pyramids in layer 5 of the cortex allow accurate encoding of exploratory whisker touch

    The limbic system: influence over motor control and learning

    No full text

    Animal models of schizophrenia

    No full text
    corecore