292 research outputs found

    The excimer fluorescence of N-(1-pyrenyl)iodoacetamide labeled to myosin and its subfragment 1

    Get PDF
    AbstractMyosin and its subfragment 1 were labeled with the fluorescent probe N-(1-pyrenyl)iodoacetamide. Both of the labeled complexes exhibited the excimer band at 480 nm (pH 8.0, 25 °C). SH1 and SH2 are labeled with this probe as judged by Ca2+-ATPase of the labeled complex. Excimers arise both from the interaction of PIAAs in the two different heads within a single myosin molecule and also from the interaction of PIAAs in the same head. ATP affects these excimers depending on the concentration of Ca2+

    Intermediate states at structural phase transition: Model with a one-component order parameter coupled to strains

    Full text link
    We study a Ginzburg-Landau model of structural phase transition in two dimensions, in which a single order parameter is coupled to the tetragonal and dilational strains. Such elastic coupling terms in the free energy much affect the phase transition behavior particularly near the tricriticality. A characteristic feature is appearance of intermediate states, where the ordered and disordered regions coexist on mesoscopic scales in nearly steady states in a temperature window. The window width increases with increasing the strength of the dilational coupling. It arises from freezing of phase ordering in inhomogeneous strains. No impurity mechanism is involved. We present a simple theory of the intermediate states to produce phase diagrams consistent with simulation results.Comment: 16 pages, 14 figure

    Multiple foci of spatial attention in multimodal working memory

    Get PDF
    The maintenance of sensory information in working memory (WM) is mediated by the attentional activation of stimulus representations that are stored in perceptual brain regions.Using event-related potentials (ERPs), we measured tactile and visual contralateral delay activity (tCDA / CDA components) in a bimodal WM task to concurrently track the attention-based maintenance of information stored in anatomically segregated (somatosensory and visual) brain areas. Participants received tactile and visual sample stimuli on both sides, and in different blocks, memorized these samples on the same side or on opposite sides. After a retention delay, memory was unpredictably tested for touch or vision. In same side blocks, tCDA and CDA components simultaneously emerged over the same hemisphere, contralateral to the memorized tactile / visual sample set. In opposite side blocks, these two components emerged over different hemispheres, but had the same sizes and onset latencies as in the same side condition. This finding indicates that distinct foci of tactile and visual spatial attention were concurrently maintained on task-relevant stimulus representations in WM. The independence of spatially-specific biasing mechanisms for tactile and visual WM content suggests that multimodal information is stored in distributed perceptual brain areas that are subject to modality-specific control processes, which can operate simultaneously and largely independently of each other

    Influence of Cognitive Functioning on Age-Related Performance Declines in Visuospatial Sequence Learning

    Get PDF
    Objectives: The aim of this study was to investigate how age-related performance differences in a visuospatial sequence learning task relate to age-related declines in cognitive functioning. Method: Cognitive functioning of 18 younger and 18 older participants was assessed using a standardized test battery. Participants then undertook a perceptual visuospatial sequence learning task. Various relationships between sequence learning and participants’ cognitive functioning were examined through correlation and factor analysis. Results: Older participants exhibited significantly lower performance than their younger counterparts in the sequence learning task as well as in multiple cognitive functions. Factor analysis revealed two independent subsets of cognitive functions associated with performance in the sequence learning task, related to either the processing and storage of sequence information (first subset) or problem solving (second subset). Age-related declines were only found for the first subset of cognitive functions, which also explained a significant degree of the performance differences in the sequence learning task between age-groups. Discussion: The results suggest that age-related performance differences in perceptual visuospatial sequence learning can be explained by declines in the ability to process and store sequence information in older adults, while a set of cognitive functions related to problem solving mediates performance differences independent of age

    Contralateral delay activity tracks the storage of visually presented letters and words

    Get PDF
    Electrophysiological studies have demonstrated that the maintenance of items in visual working memory (VWM) is indexed by the contralateral delay activity (CDA), which increases in amplitude as the number of objects to remember increases, plateauing at VWM capacity. Previous work has primarily utilized simple visual items, such as colored squares or picture stimuli. Despite the frequent use of verbal stimuli in seminal investigations of visual attention and memory, it is unknown whether temporary storage of letters and words also elicit a typical load‐sensitive CDA. Given their close associations with language and phonological codes, it is possible that participants store these stimuli phonologically, and not visually. Participants completed a standard visual change‐detection task while their ERPs were recorded. Experiment 1 compared the CDA elicited by colored squares compared to uppercase consonants, and Experiment 2 compared the CDA elicited by words compared to colored bars. Behavioral accuracy of change detection decreased with increasing set size for colored squares, letters, and words. We found that a capacity‐limited CDA was present for colored squares, letters, and word arrays, suggesting that the visual codes for letters and words were maintained in VWM, despite the potential for transfer to verbal working memory. These results suggest that, despite their verbal associations, letters and words elicit the electrophysiological marker of VWM encoding and storage

    The neural basis of attentional control in visual search

    Get PDF
    How do we localise and identify target objects among distractors in visual scenes? The role of selective attention in visual search has been studied for decades and the outlines of a general processing model are now beginning to emerge. Attentional processes unfold in real time and this review describes four temporally and functionally dissociable stages of attention in visual search (preparation, guidance, selection, and identification). Insights from neuroscientific studies of visual attention suggest that our ability to find target objects in visual search is based on processes that operate at each of these four stages, in close association with working memory and recurrent feedback mechanisms
    corecore