2,636 research outputs found

    Transportation Economics

    Get PDF

    The Analysis of Public Output

    Get PDF

    How a fast lane may replace a congestion toll

    Get PDF
    This paper considers a congested bottleneck. A fast lane reserves a more than proportional share of capacity to a designated group of travelers. Travelers are otherwise identical and other travelers can use the reserved capacity when it would otherwise be idle. The paper shows that such a fast lane is always Pareto improving under Nash equilibrium in arrival times at the bottleneck and inelastic demand. It can replicate the arrival schedule and queueing outcomes of a toll that optimally charges a constant toll during part of the demand peak. Within some bounds, the fast lane scheme is still welfare improving when demand is elastic

    INSURANCE UNDER THE FEDERAL INCOME TAX

    Get PDF

    Computer-aided verification in mechanism design

    Full text link
    In mechanism design, the gold standard solution concepts are dominant strategy incentive compatibility and Bayesian incentive compatibility. These solution concepts relieve the (possibly unsophisticated) bidders from the need to engage in complicated strategizing. While incentive properties are simple to state, their proofs are specific to the mechanism and can be quite complex. This raises two concerns. From a practical perspective, checking a complex proof can be a tedious process, often requiring experts knowledgeable in mechanism design. Furthermore, from a modeling perspective, if unsophisticated agents are unconvinced of incentive properties, they may strategize in unpredictable ways. To address both concerns, we explore techniques from computer-aided verification to construct formal proofs of incentive properties. Because formal proofs can be automatically checked, agents do not need to manually check the properties, or even understand the proof. To demonstrate, we present the verification of a sophisticated mechanism: the generic reduction from Bayesian incentive compatible mechanism design to algorithm design given by Hartline, Kleinberg, and Malekian. This mechanism presents new challenges for formal verification, including essential use of randomness from both the execution of the mechanism and from the prior type distributions. As an immediate consequence, our work also formalizes Bayesian incentive compatibility for the entire family of mechanisms derived via this reduction. Finally, as an intermediate step in our formalization, we provide the first formal verification of incentive compatibility for the celebrated Vickrey-Clarke-Groves mechanism
    • …
    corecore