1,008 research outputs found

    A comparison of manual and automatic moth sampling methods (Lepidoptera : Arctiidae, Geometridae) in a rain forest in Costa Rica

    Get PDF
    Sampling with UV fluorescent light tubes is a commonly used technique both in applied and basic insect studies. Our study compares the performance of two such methods: manual sampling (light towers) and automatic sampling (funnel light traps). The abundance, diversity, and body size of moths representing two species-rich families (Lepidoptera: Arctiidae, Geometridae) were analyzed in a lowland rain forest in Costa Rica (La Selva Biological Station, 10.4 degrees N, 84.0 degrees W) during 2003 and 2004. Light towers were equipped with two 15-W UV fluorescent tubes and were operated for 3 h in 16 nights. Traps equipped with single 8-W fluorescent tubes were run throughout 20 nights in the understory of the forest. In addition, parallel trap sampling was carried out in the canopy. A total of 1,238 arctiid moths representing 162 species and 1,769 geometrid moths representing 196 species were collected. In Geometridae, tower samples were significantly larger than trap samples. Towers also attracted a higher overall number of species. Very small geometrids (particularly of the subfamily Sterrhinae) were under-represented in trap samples, suggesting that this method is biased toward larger species. In arctiid moths, there were no significant differences in either the sample sizes, the number of species or in the size of the individuals sampled. Diversity calculated as Fisher's a was similar for towers and understory traps in both families. A major component of diversity was added with canopy trap samples for arctiid moths, but not for geometrid moths. In conclusion, ground-based tower sampling proved to be the most suitable method for geometrid moths, and trap sampling including both understory and canopy for arctiid moths. For full moth species inventories, a combination of both approaches is recommended

    Field margins as rapidly evolving local diversity hotspots for ground beetles (Coleoptera : Carabidae) in northern China

    Get PDF
    The diversity of carabid assemblages at newly established field margins was compared to the diversity in surrounding fields and woodland habitats at Dongbeiwang village, Beijing. Carabids were sampled using 6 pitfalls per plot at a total of 12 plots in the year 2000. Although sampled only a year after their establishment, field margins harbored the most abundant and diverse carabids assemblages of all sites. More than a quarter of carabid species encountered were furthermore restricted to catches from field margins. Also woodland and fields under rotational wheat/maize cultivation harbored some unique species. Therefore, a short term establishment of field margins is effective in enhancing diversity and abundance of carabids, an important predator group in the agricultural landscape, while only the preservation of a heterogeneous landscape will enable the conservation of the overall species diversity

    Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China

    Get PDF
    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning

    The Chord-Normalized Expected Species Shared (CNESS)-distance represents a superior measure of species turnover patterns

    Get PDF
    1. Measures of β-diversity characterizing the difference in species composition between samples are commonly used in ecological studies. Nonetheless, commonly used dissimilarity measures require high sample completeness, or at least similar sample sizes between samples. In contrast, the Chord-Normalized Expected Species Shared (CNESS) dissimilarity measure calculates the probability of collecting the same set of species in random samples of a standardized size, and hence is not sensitive to completeness or size of compared samples. To date, this index has enjoyed limited use due to difficulties in its calculation and scarcity of studies systematically comparing it with other measures. 2. Here, we developed a novel R function that enables users to calculate ESS (Expected Species Shared)-associated measures. We evaluate the performance of the CNESS index based on simulated datasets of known species distribution structure, and compared CNESS with more widespread dissimilarity measures (Bray-Curtis index, Chao-Sørensen index, and proportionality based Euclidean distances) for varying sample completeness and sample sizes. 3. Simulation results indicated that for small sample size (m) values, CNESS chiefly reflects similarities in dominant species, while selecting large m values emphasizes differences in the overall species assemblages. Permutation tests revealed that CNESS has a consistently low CV (coefficient of variation) even where sample completeness varies, while the Chao-Sørensen index has a high CV particularly for low sampling completeness. CNESS distances are also more robust than other indices with regards to undersampling, particularly when chiefly rare species are shared between two assemblages. 4. Our results emphasize the superiority of CNESS for comparisons of samples diverging in sample completeness and size, which is particular important in studies of highly mobile and species-rich taxa where sample completeness is often low. Via changes in the sample size parameter m, CNESS furthermore cannot only provide insights into the similarity of the overall distribution structure of shared species, but also into the differences in dominant and rare species, hence allowing additional, valuable insights beyond the capability of more widespread measures

    Estimating the number of species shared by incompletely sampled communities

    Get PDF
    There are numerous ways to estimate the true number of species in a community based on incomplete samples. Nonetheless, comparable approaches to estimate the number of species shared between two incompletely sampled communities are scarce. Here, we introduce the ‘total expected species shared' (TESS) measure and provide the R function for its calculation. Based on parametric asymptotic models, TESS provides estimates of the true number of species shared between incompletely sampled communities based on abundance data. We compare TESS results with abundance-based non-parametric methods in terms of precision and accuracy, using different simulated sampling scenarios. We further calculate TESS using an empirical dataset, highlighting changes in accuracy and precision with increasing sample size. We also demonstrate how TESS values can be combined with species richness estimators in turnover estimates using traditional β-diversity indices. Our results show that mean values of TESS reliably approximate the true shared species number for varying sample completeness scenarios, with both accuracy and precision increasing with increasing sample completeness. Overall, we demonstrate the viability of TESS in estimations of the true number of species shared between two incompletely sampled communities. We also stress the importance of a sufficient sample size for the accuracy of estimates – requiring sampling designs that carefully balance sampling effort per site with the number of sampling sites

    China's national nature reserve network shows great imbalances in conserving the country's mega-diverse vegetation

    Get PDF
    The National Nature Reserve (NNR) network forms a central element in China's governmental strategy to conserve the country's vast biodiversity and its varied ecosystems. Nonetheless, the effectiveness of the existing NNR network in protecting China's highly diverse habitats and the fauna and flora they contain has remained unclear. Here, we analyze how comprehensively the existing NNR network protects China's vegetation diversity, identifying potential gaps to inform future NNR designations. Covering ~15.7% of China's land area, the existing nature reserve network contains 18 main vegetation types and 26 sub-types. All main vegetation types are also contained in the National-level Nature Reserves (NNRs), but to highly differing degrees. NNRs cover ~24.0% of China's grasslands, but only ~3.3% of the country's monsoon forests. With regards to main vegetation regions, about 41.4% of the Qinghai-Xizang Plateau is covered by NNRs, in contrast to only ~4.6% of the region representing warm-temperate deciduous broad-leaved forests. In five main vegetation regions, NNRs cover 50% of the vegetation types in their respective region. Overall, NNR size increases and fragmentation decreases from China's south-east to its western provinces. The resulting, extremely uneven distribution of NNRs across China limits their effectiveness in protection the country's plant diversity treasure trove. The country's NNR network therefore needs significant adjustments to effectively conserve China's valuable natural resources for future generations

    Improving the pollinator pantry: Restoration and management of open farmland ponds enhances the complexity of plant-pollinator networks

    Get PDF
    In line with general biodiversity losses across agricultural landscapes, insect pollinators have experienced recent sharp declines. A range of conservation measures have been developed to address these declines, with plant-pollinator interaction networks providing key insights into the effectiveness of these measures. For the first time, we studied interactions between three diurnal pollinator groups (bees, hoverflies, and butterflies) and insect-pollinated plants to understand how they are affected by pond management and restoration. Major network contributors were identified, and important network-level parameters compared at nine farmland ponds under different management strategies to assess management effects on plant-pollinator interactions: three ‘overgrown’ tree-covered ponds, three ‘long-term managed ponds’ kept in an open-canopy, early- to mid-successional state by periodic interventions involving tree and sediment removal, and three ‘recently restored ponds’, initially heavily overgrown with woody vegetation, and subsequently rapidly transformed into an early succession state through major tree and sediment removal. Interaction complexity, as measured by the metrics ‘links per species’, ‘linkage density’, Fisher’s alpha and Shannon’s Diversity, was higher for both long-term managed and recently restored ponds compared to overgrown ponds. Several network-level parameters indicated that highest complexity levels were found at recently restored ponds due to their substantially higher plant diversity. Bipartite interaction analysis suggests major benefits of pond management and restoration for agricultural pollinator assemblages. We strongly advocate the inclusion of ponds in conservation strategies and policies aimed at pollinators - ponds should be part of the pollinator pantry

    Diverse locations and a long history: historical context for urban leopards (Panthera pardus) in the early Anthropocene from Seoul, Korea

    Get PDF
    While the urban landscapes of the early Anthropocene may appear hostile to large carnivores, humans and leopards (Panthera pardus) are known to co-inhabit major urban centres like Mumbai (India), Nairobi (Kenya) and Johannesburg (South Africa). We provide evidence that the presence of leopards in urban landscapes is not, however, a new phenomenon and has occurred repeatedly over the early history of the Anthropocene. Using records of Amur leopards (P. p. orientalis) in Seoul, Korea, at the end of the 19th century, a capital city and major urban centre with a high human population density, we explore socio-cultural, political and ecological factors that may have facilitated human-leopard co-occurrence in an urban landscape and the factors that eventually led to the leopards' extirpation. We suggest that, in the absence of unsustainable levels of persecution by humans, leopards are able to persist in urban landscapes which contain small patches of dense vegetation and have sufficient alternative food supplies. In light of the continued expansion of urban landscapes in the 21st century and increasing conservation focus on the presence of large carnivore populations there, this paper provides historical context to human co-existence with leopards in urban landscapes during the Anthropocene – and what we can learn from it for the future

    Once a pond in time: employing palaeoecology to inform farmland pond restoration

    Get PDF
    The restoration of highly terrestrialized farmland ponds that combines the removal of woody vegetation and pond sediment greatly enhances aquatic biodiversity. Nonetheless, questions remain regarding the historical precedent of pond restoration, and particularly if post-restoration aquatic macrophyte communities resemble pre-terrestrialization assemblages. We used a paleoecological approach to address these questions for a typical, recently restored farmland pond in Norfolk, eastern England. Plant and animal remains in pond sediment cores were used to infer decadal-centennial scale changes to pond communities and to identify past pond management events. We then evaluated the resemblance of restored and historical assemblages by comparisons with contemporary post-restoration vegetation data. Based on changes in the abundance of terrestrial leaf remains and other indicators (increases followed by declines of aquatic organisms), the study pond appears to have a long history (going back to the early-1800s) of canopy management (at least three inferred management events), but after the mid-1970s, steady and substantial increases in terrestrial indicators, suggest cessation of management resulting in uninterrupted terrestrialization. Aquatic macrophyte communities arising after restoration showed some similarities with historical assemblages, but also contained apparently new species. This study demonstrates how paleolimnological methods can improve understanding of pond ecological histories to better inform restoration targets and practices. Implications for Practice Paleolimnological methods can be successfully employed at small, human-made ponds to assess past biological communities and trajectories of ecological change. Restoration of heavily terrestrialized farmland ponds through major woody vegetation and sediment removal mimics periodic management activities undertaken over past centuries and is essential to the maintenance of open canopy conditions and biodiversity conservation. Caution must be taken when setting restoration targets for farmland ponds as rare macrophyte species indicative of high water quality may not necessarily return to restored pond habitats due to fragmentation effects associated with the loss of local populations and/or in-pond eutrophication development
    corecore