25 research outputs found
Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
Improving sperm banking efficiency in endangered species through the use of a sperm selection method in brown bear (Ursus arctos) thawed sperm
Abstract Background Sperm selection methods such as Single Layer Centrifugation (SLC) have been demonstrated to be a useful tool to improve the quality of sperm samples and therefore to increase the efficiency of other artificial reproductive techniques in several species. This procedure could help to improve the quality of genetic resource banks, which is essential for endangered species. In contrast, these sperm selection methods are optimized and focused on farm animals, where the recovery task is not as important as in endangered species because of their higher sperm availability. The aim of this study was to evaluate two centrifugation methods (300 x g/20 min and 600 x g/10 min) and three concentrations of SLC media (Androcoll-Bear â80, 65 and 50%) to optimise the procedure in order to recover as many sperm with the highest quality as possible. Sperm morphology could be important in the hydrodynamic relationship between the cell and centrifugation medium and thus the effect of sperm head morphometry on sperm yield and its hydrodynamic relationship were studied. Results The samples selected with Androcoll-Bear 65% showed a very good yield (53.1 ± 2.9) although the yield from Androcoll-Bear 80% was lower (19.3 ± 3.3). The latter showed higher values of motility than the control immediately after post-thawing selection. However, both concentrations of colloid (65 and 80%) showed higher values of viable sperm and viable sperm with intact acrosome than the control. After an incubation of 2 h at 37 °C, the samples from Androcoll-Bear 80% had higher kinematics and proportion of viable sperm with intact acrosome. In the morphometric analysis, the sperm selected by the Androcoll-Bear 80% showed a head with a bigger area which was more elongated than the sperm from other treatments. Conclusions We conclude that sperm selection with Androcoll-Bear at either 65% or 80% is a suitable technique that allows a sperm population with better quality than the initial sample to be obtained. We recommend the use of Androcoll-Bear 65% since the yield is better than Androcoll-Bear 80%. Our findings pave the way for further research on application of sperm selection techniques to sperm banking in the brown bear
Analysis of seminal plasma from brown bear (Ursus arctos) during the breeding season: Its relationship with testosterone levels
Seminal plasma (SP) plays an important role in the motility, viability and maintenance of the fertilizing capacity of mammalian spermatozoa. This study is the first on brown bear (Ursus arctos) SP components, and has two main objectives: 1) to define the SP composition in bear ejaculate and 2) to identify variations in SP composition in relation to high and low levels of testosterone in serum during the breeding season. Forty-eight sperm samples from 30 sexually mature male brown bears (Ursus arctos) were obtained by electroejaculation, and their serum testosterone levels were assessed to sort the animals into 2 groups (high and low testosterone levels, threshold 5 ng/dl). The biochemical and protein compositions of the SP samples were assessed, and sperm motility was analyzed. We found that lactate dehydrogenase was significantly higher in the low-serum-testosterone samples, while concentrations of lipase and Mg+ values were significantly higher in the high-serum-testosterone samples. In contrast, sperm motility did not significantly differ (P>0.05) between the testosterone level groups (total motility: 74.42.8% in the high-level group vs. 77.1±4.7% in the low-level group). A reference digital model was constructed since there is no information for this wild species. To do this, all gel images were added in a binary multidimensional image and thirty-three spots were identified as the most-repeated spots. An analysis of these proteins was done by qualitative equivalency (isoelectric point and molecular weight) with published data for a bull. SP protein composition was compared between bears with high and low serum testosterone, and three proteins (binder of sperm and two enzymes not identified in the reference bull) showed significant (P<0.05) quantitative differences. We conclude that male bears with high or low serum testosterone levels differs only in some properties of their SP, differences in enzyme LDIP2, energy source LACT2, one protein (similar to BSP1) and Mg ion were identified between these two groups. These data may inform the application of SP to improve bear semen extenders
A simple flow cytometry protocol to determine simultaneously live, dead and apoptotic stallion spermatozoa in fresh and frozen thawed samples
Spermatozoa undergo apoptotic changes during the cryopreservation process. These changes, recently termed spermptosis, resemble the cryopreservation induced delayed onset of cell death observed after thawing of somatic cells. Due to its importance in cryobiology, methods to easily identify spermptotic cells are warranted. In this study, a well-validated method for identification of spermatozoa with caspase 3 activity was compared with use of the combination of Hoechst 33342 (H-42) and ethidium homodimer (Eth-1). Live, dead and apoptotic spermatozoa assessed with each method were compared using descriptive statistics and method agreement analysis. No differences were observed in the percentages of spermatozoa in each of the categories investigated with each method. Moreover the method agreement analysis indicated there were consistent findings using both methods The combination H-42/Eth-1 can be successfully used to determine apoptosis in addition to dead and live spermatozoa. Moreover the intensity of H-42 fluorescence (bright and dim populations) allows for distinguishing of live and dead sperm cells
Computational flow cytometry reveals that cryopreservation induces spermptosis but subpopulations of spermatozoa may experience capacitation-like changes
The reduced lifespan of cryopreserved spermatozoa in the mare reproductive tract has been attributed to both capacitative and apoptotic changes. However, there is a lack of studies investigating both phenomena simultaneously. In order to improve our knowledge in this particular point, we studied in raw and frozen-thawed samples apoptotic and capacitative markers using a wide battery of test based in flow cytometry. Apoptotic markers evaluated were caspase 3 activity, externalization of phosphatidylserine (PS), and mitochondrial membrane potential. Markers of changes resembling capacitation were membrane fluidity, tyrosine phosphorylation, and intracellular sodium. Conventional and computational flow cytometry using nonlinear dimensionally reduction techniques (t-distributed stochastic neighbor embedding (t-SNE)) and automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE) were used. Most of the changes induced by cryopreservation were apoptotic, with increase in caspase 3 activation (P < 0.01), PS translocation to the outer membrane (P < 0.001), loss of mitochondrial membrane potential (P < 0.05), and increase in intracellular Na+ (P < 0.01). Average values of markers of capacitative changes were not affected by cryopreservation; however, the analysis of the phenotype of individual spermatozoa using computational flow cytometry revealed the presence of subpopulations of spermatozoa experiencing capacitative changes. For the first time advanced computational techniques were applied to the analysis of spermatozoa, and these techniques were able to disclose relevant information of the ejaculate that remained hidden using conventional flow cytometry
Additional file 1: of Improving sperm banking efficiency in endangered species through the use of a sperm selection method in brown bear (Ursus arctos) thawed sperm
Data from the sperm quality parameters assessed. (PDF 39Â kb
Additional file 2: of Improving sperm banking efficiency in endangered species through the use of a sperm selection method in brown bear (Ursus arctos) thawed sperm
Data from sperm morphometry assessment. (PDF 1413Â kb
How does the microbial load affect the quality of equine cool-stored semen?
Contaminating bacteria present in stallion ejaculates may compromise sperm quality during storage. Different procedures have been used to reduce the load of microorganisms in semen and avoid bacterial growth during storage. The aims of this study were: 1) to evaluate different techniques to eliminate bacteria in semen 2) to study the relationship between total microflora load (TML) and ROS production; and 3) to determine if TML affects the functionality of cool-stored sperm. Ejaculates from 11 stallions were split and processed in 3 ways: A. extended semen; B. conventional centrifuged semen, and C. Single layer centrifugation through Androcoll-E (SLC). All samples were preserved in INRA 96 at 5 °C for 72 h. Aliquots from native semen and from different treatments were taken for bacteriological analysis at T0, T24, T48 and T72h of storage and Total microbial load (TML: CFU (colony-forming units/ml) was calculated. The ROS production (dichlorodihydrofluorescein diacetate for H2O2, dihydroethidium for superoxide anion and CellROX deep red for total ROS), viability (YO-PRO-1-Ethidium) and lipid peroxidation (BODIPY-C11) were assessed by flow cytometry, and motility by CASA. The bacteria isolated were Corynebacterium spp, Arcanobacterium spp, Bacillus spp, Dermobacter, Staphylococcus spp, Streptococcus spp, Penicilium spp. TML of semen showed correlations with live sperm (r: â0.771), dead sperm (r: 0.580), H2O2 production (r: 0.740), and total ROS production (CellROX (+)) (r: â0.607), Total motility (r: 0.587), Progressive motility (r: â0.566), VCL (r: â0.664), VSL (r: â0,569), VAP (r: â0.534) (p †0.05). SLC removed 99.34% of the microbial load, which was assicated with a significanlty reduced H2O2 production (p †0.05). However, only samples treated with Androcoll-E had a higher total ROS production (CellROX +) (p †0.05). These results suggest that CellROX stain probably identifies superoxide production rather than H2O2 and this higher superoxide production may reflect an intense sperm functionality. The bacterial load increased the production of H2O2 in cool-stored semen which was associated with lower tolerance to refrigeration. SLC was the sperm processing technique that was most efficient at removing bacteria, reducing H2O2 production and selecting the most functional sperm
Redox cycling induces spermptosis and necrosis in stallion spermatozoa while the hydroxyl radical (OHâą) only induces spermptosis
Oxidative stress is a major factor explaining sperm dysfunction of spermatozoa surviving freezing and thawing and is also considered a major inducer of a special form of apoptosis, visible after thawing, in cryopreserved spermatozoa. To obtain further insights into the link between oxidative stress and the induction of apoptotic changes, stallion spermatozoa were induced to oxidative stress through redox cycling after exposure to 2-methyl-1,4-naphthoquinone (menadione), or hydroxyl radical formation after FeSO4 exposure. Either exposure induced significant increases (p < 0.05) in two markers of lipid peroxidation: 8-iso-PGF2α and 4-hydroxynonenal (4-HNE). While both treatments induced changes indicative of spermptosis (caspase-3 activation and decreased mitochondrial membrane potential) (p < 0.01), menadione induced sperm necrosis and a dramatic reduction in motility and thiol content in stallion spermatozoa. Thus, we provided evidence that oxidative stress underlies spermptosis, and thiol content is a key factor for stallion sperm function
Redox cycling induces spermptosis and necrosis in stallion spermatozoa while the hydroxyl radical (OH center dot) only induces spermptosis
Oxidative stress is a major factor explaining sperm dysfunction of spermatozoa surviving freezing and thawing and is also considered a major inducer of a special form of apoptosis, visible after thawing, in cryopreserved spermatozoa. To obtain further insights into the link between oxidative stress and the induction of apoptotic changes, stallion spermatozoa were induced to oxidative stress through redox cycling after exposure to 2-methyl-1,4-naphthoquinone (menadione), or hydroxyl radical formation after FeSO4 exposure. Either exposure induced significant increases (p amp;lt; 0.05) in two markers of lipid peroxidation: 8-iso-PGF(2) and 4-hydroxynonenal (4-HNE). While both treatments induced changes indicative of spermptosis (caspase-3 activation and decreased mitochondrial membrane potential) (p amp;lt; 0.01), menadione induced sperm necrosis and a dramatic reduction in motility and thiol content in stallion spermatozoa. Thus, we provided evidence that oxidative stress underlies spermptosis, and thiol content is a key factor for stallion sperm function.Funding Agencies|Secretaria de Estado de Investigacion, Desarrollo e Innovacion [AGL2013-43211-R, IJCI-2014-21671]; Ministerio de Educacion Cultura y Deporte [FPU13/03991]; Ministerio de Economia y Competitividad-FEDER [AGL2013-43211-R]; Junta de Extremadura-FEDER [IB16030, GR 15029]; Swedish Research Councils [521-2011-6353]; Formas [221-2011-512]</p